
PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012 217

Marek PALKOWSKI 1, Wlodzimierz BIELECKI 1

West Pomeranian University of Technology (1)

Programming NVIDIA cards by means of transitive closure
based parallelization algorithms

Abstract. Massively parallel processing is a type of computing that uses many separate CPUs or GPUs running in parallel to execute a single
program. Because most computations are contained in program loops, automatic extraction of parallelism available in loops is extremely important
for many-core systems. In this paper, we study speed-up and scalability of parallel code scanning synchronization-free slices and time partitions by
means of a 960 CUDA Cores machine, Tesla S1070.

Streszczenie. Przetwarzanie równoległe na wielką skalę wykonywane jest za pomocą wielu procesorów (również graficznych) wykonujących
jednocześnie instrukcje pojedynczego programu. Ponieważ większość obliczeń zlokalizowana jest w pętlach programowych, automatyczne
zrównoleglanie kodu jest ważne dla maszyn wielordzeniowych. W artykule zbadano przyspieszenie i skalowalność równoległego kodu złożonego z
niezależnych fragmentów lub harmonogramowania swobodnego za pomocą maszyny Tesla S1070 zbudowanej z 960 rdzeni CUDA.
Metody tworzenia aplikacji równoległych dla wielordzeniowych komputerów

Keywords: parallel program loops, many-core machines, synchronization-free slicing, free-scheduling.
Słowa kluczowe: równoległe pętle programowe, komputery wielordzeniowe, niezależne fragmenty kodu, harmonogramowanie swobodne.

Introduction

Massively-parallel architectures are able to execute
thousands of concurrent threads. These systems are
scalable and allow software users to boost computing
performance simply by adding processors. Demand for
high-computing performance in science and industry
requires automated tools permitting for exposing parallelism
for such systems.

Because most computations are contained in program
loops, automatic extraction of parallelism available in loops
is extremely important for many-core systems, allowing us
to produce parallel code from existing sequential
applications and to create multiple threads that can be
easily scheduled to achieve high program performance.

Papers [1, 2] present algorithms to extract coarse-
grained parallelism represented with synchronization-free
slices consisting of loop statement instances. Those
algorithms are base on the Iteration Space Slicing
Framework (ISSF) that uses the transitive closure of
dependence relations to extract parallelism. Paper [5]
introduces an approach to extract fine-grained parallelism
representing free scheduling for statement instances of
affine loops. It also uses the transitive closure of
dependence relations to expose parallelism Under the free
schedule, loop statement instances are executed as soon
as their operands are available.

In the current paper, we focus on the problem of the
speed-up, efficiency, and scalability of parallel loops for a
many-core machine, NVIDIA Tesla S1070 being produced
by means of slicing and free-scheduling. The Cost of
synchronization and communication is also considered.
Experimental results are presented

Background

In this paper, we deal with affine loop nests where
 for given loop indices, lower and upper bounds as well

as array subscripts and conditionals are affine functions
of surrounding loop indices and possibly of structure
parameters (i.e., parameterized loop bounds),

 the loop steps are known positive constants.
A nested loop is called perfectly nested if all its

statements are comprised within the innermost nest.
Otherwise, the loop is called imperfectly nested.

A statement instance s(I) is a particular execution of a
loop statement s for a given iteration I.

Two statement instances s1(I) and s2(J) are dependent if
both access the same memory location and if at least one

access is a write. s1(I) and s2(J) are called the source and
destination of a dependence, respectively, provided that
s1(I) is lexicographically fewer than s2(J) (we write this as
(s1(I)  s2(J)), i.e., s1(I) is always executed before s2(J)).

The approach to extract synchronization-free parallelism
in program loops by means of the Iteration Space Slicing
Framework requires an exact representation of loop-carried
dependences and consequently an exact dependence
analysis which detects a dependence if and only if it
actually exists. To describe and implement algorithms, we
choose the dependence analysis proposed by Pugh and
Wonnacott [3] where dependences are represented by
dependence relations whose constraints are described in
the Presburger arithmetic (built of affine equalities and
inequalities, logical and existential operators); the Omega
library is used for computations over such relations [4].

A dependence relation is a tuple relation of the form
{[input list]  [output list] : constraints}; where input list
and output list are the lists of variables and/or expressions
used to describe input and output tuples and constraints is
a Presburger formula describing constraints imposed upon
input list and output list.

We use standard operations on relations and sets, such
as intersection (), union (), difference (-), domain of
relation (domain(R)), range of relation (range(R)), relation
application (given a relation R and set S, R(S) = {[e’]:  e
 S, e e’R), positive transitive closure (given a

relation R, R+ = {[e]  [e’]: e  e’  R ||  e’’ s.t. e 
e’’  R & e’’ e’R+}), transitive closure (R* = R+  I,
where I is the identity relation). These operations are
described in detail in [11].

To permit for applying the operations mentioned above
on relations and sets, we have to preprocess them by
means of the following two steps.
1. Make the sizes of input and output tuples of

dependence relations to be the same by inserting the
value ”-1” at the rightmost positions of correspondent
tuples

2. Insert identifiers of loop statements in the last position of
input and output tuples.

 Inserting ”-1” does not introduce any false (not existing)
dependence after preprocessing because existing
programming languages suppose that loop indices cannot
be negative. It can be obviously omitted when we deal with
perfectly nested loops.

218 PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012

 Inserting loop statement identifiers makes clear which
statements originate sources and destinations of
dependences. This step of the preprocessing procedure
can be skipped when the loop body comprises the only
statement.
The formal presentation of the preprocessing procedure is
introduced in paper [2].

Extracting coarse-grained parallelism in program loops

Definition 1. Given a dependence graph, D, defined by
a set of dependence relations, S, a slice is a weakly
connected component of graph D, i.e., a maximal subgraph
of D such that for each pair of vertices in the subgraph there
exists a directed or undirected path.

If there exist two or more slices in D, then taking into
account the above definition, we may conclude that all
slices are synchronization-free, i.e., there is no dependence
between them.

Definition 2. An ultimate dependence
source(destination) is a source (destination) that is not the
destination (source) of another dependence. Ultimate
dependence sources and destinations represented by
relation R can be found by means of the following
calculations: (domain(R) - range(R)) and (range(R) -
domain(R)), respectively.

Definition 3. The source(s) of a slice is an ultimate
dependence source(s) that this slice contains.

Definition 4. The representative loop statement
instance of a slice is its lexicographically minimal source.

Further on in this paper, we refer to representative loop
statement instances as to representatives.

The approach to extract synchronization-free slices [1]
relies on the transitive closure of an affine dependence
relation describing all dependences in a loop and consists
of two steps. First, representatives of slices are found in
such a manner that each slice is represented with its
lexicographically minimal statement instance. Next, slices
are reconstructed from their representatives and code
scanning these slices is generated.

Given a dependence relation R describing all
dependences in a loop, we can find a set of statement
instances, SUDS, describing all ultimate dependence sources
of slices as SUDS=domain(R) - range(R). In order to find
elements of SUDS that are representatives of slices, we
build a relation, RUSC, that describes all pairs of the ultimate
dependence sources that are transitively connected in a
slice, as follows:

(1))},(*)'(*,',',:]'[]{[: eReReeSeeeeR UDSUSC  

where R* is the transitive closure of relation R.

The condition (e  e’) in the constraints of relation
RUSC means that e is lexicographically smaller than e’.
Such a condition guarantees that the lexicographically
smallest element from e and e’ will always appear in the
input tuple, i.e., the lexicographically smallest source of a
slice (its representative source) can never appear in the
output tuple. The intersection)(*)'(* eReR  in the

constraints of RUSC guarantees that elements e and e’ are
transitively connected, i.e., they are the sources of the
same slice.

Set Srepr containing representatives of each slice is
found as Srepr= SUDS- range(RUSC).

Each element e of set Srepr is the lexicographically
minimal statement instance of a synchronization-free slice.
If e is the representative of a slice with multiple sources,
then the remaining sources of this slice can be found
applying relation (RUSC)* to e, i.e., (RUSC)*(e). If a slice has

the only source, then (RUSC)*(e)=e. The elements of a slice
represented with e can be found applying relation R* to the
set of sources of this slice: Sslice= R*((RUSC)*(e)).
 Let us illustrate the presented technique by means of
the following parameterized loop.

Example 1
for(i=1; i<=N; i++)
 for(j=1; j<=N; j++)
 a[i][j] = a[i][j-1];

There is the following dependence relation returned by
Petit.

R1 = {[i,j]->[i,j+1] : 1 <= i <= n && 1 <= j < n}

The following set

{[i,1] : 1 <= i <= n && 2 <= n}

Represents sources of slices.

Applying algorithm Gen_affine for independent slices
extraction [1] and the codegen function from the Omega
Calculator [4], we generate the following parallel code:

if (n >= 2)
 par for(t1 = 1; t1 <= n; t1++) {
 a[t1][1] = a[t1][0];
 if (n >= t1 && t1 >= 1)
 for(t2 = 2; t2 <= n; t2++)
 a[t1][t2] = a[t1][t2-1];
 }

Next, we manually transform the above code to the parallel
CUDA code:

// Kernel that executes on the CUDA device
__global__ void slice((float(*a)[N], int N, int
packet)
{
 int idx = blockIdx.x;
 int t1, t2;
 int lb = idx*packet+1;
 int ub = ((idx+1)*packet<N) ? (idx+1)*packet:N;
 if (N >= 2)
 for(t1 = lb; t1 <= ub; t1++) {
 a[t1][1] = a[t1][0];
 if (N >= t1 && t1 >= 1)
 for(t2 = 2; t2 <= n; t2++)
 a[t1][t2] = a[t1][t2-1];
 }
 }
// main program
... //cudaAlloc and cudaMemCopy FromHostToDevice
slice<<< N_CPU, 1 >>>((float(*)[N])a, N, packet);
... // cudaMemCopy FromDeviceToHost

Fig.1. Iteration space and dependences of the loop

 The main function of this code runs kernels of parallel
loops. The value of variable n_blocks represents the
number of threads that execute a single block of
independent loop statement instances, i.e., the number of

j

i

PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012 219

engaged CUDA cores. The value of variable idx defines the
identifier of a block; the values of variables lb and ub
indicate the lower and upper bounds of the parallel loop,
respectively; variable packet is to represent the number of
iterations in a block.
Figure 1 presents slices for Example 1 when n=4.

Extracting fine-grained parallelism in program loops
 Definition 5. The free schedule is the function that
assigns statement instances (for execution) as soon as their
operands are available, that is, it is mapping

LD: such that:

(2)









ppLDpp

pptsLDpnoisthereif
p




',')),'(max(1

'..'0
)(




 Under the free schedule, loop statement instances are
executed as soon as their operands are available. An
approach for extracting parallel code scanning time
partitions is presented in paper [5].
 Given a dependence relation R describing all
dependences in a loop, we create the relation R’ by
inserting variables k and and k+1 into the first position of the
input and output tuples of relation R. Variable k is to present
the time of a partition (a set of statement instances to be
executed at time k). Next, we calculate the transitive closure
of relation R’, R’*, and form the following relation:

(3)

]})}.,0\{[)'((),'.(.'(

]}),0\{[*)'((),(

)(:],[]{[

XRRangeYktskk

XRRangeYk

RUDSXYkXFS





where (R’)*\{[0,X]} means that the domain of relation

(R’)* is restricted to the set including ultimate dependence
sources only (elements of this set
belong to the first time partition); the constraint

]}),0\{[)'((),'.(.'(XRRangeYktskk  guarantees

that partition k includes only those statement instances
whose operands are available, i.e., each statement instance
will belong to one time partition only.

The first element of the tuple representing the set
Range(FS) points out the time of a partition while the last
element of that exposes what is the statement whose
instance(iteration) is defined by the tuple elements 2 to n-1,
where n is the number of the tuple elements of a
preprocessed relation. Taking the above consideration into
account and provided that the constraints of relation FS are
affine, the set Range(FS) is used to generate parallel code
applying any well-known technique to scan its elements in
the lexicographic order, for example the techniques
presented in papers [6-7].
 The outermost sequential loop of such code scans
values of variable k (representing the time of partitions)
while inner parallel loops scan independent instances of
partition k.
 Let us illustrate the presented technique by means of
the following imperfectly-nested and parameterized loop.

Example 2
for(i=1; i<=n; i++){
 a[i][0] = 1; //s1
 for(j=1; j<=n; j++){
 a[i][j] = a[i-1][j] + a[i][j-1]; //s2
 }
}
There are the three dependence relations returned by Petit

R1 ={[i,-1,1] -> [i,1,2] : 1 <= i <= n};

R2 ={[i,j,2] -> [i+1,j,2] : 1 <= i < n && 1 <= j
<= n};
R3 ={[i,j,2] -> [i,j+1,2] : 1 <= i <= n && 1 <= j
< n}.

Applying the presented algorithm, we get the following
results being produced by means of the Omega calculator.

R' = {[k,i,-1,1] -> [k+1,i,1,2] : 1 <= i <= n &&
0 <= k} union {[k,i,j,2] -> [k+1,i+1,j,2] : 1 <=
i < n && 1 <= j <= n && 0 <= k} union {[k,i,j,2]
-> [k+1,i,j+1,2] : 1 <= i <= n && 1 <= j < n && 0
<= k}.

 R'+ = {[k,i,j,2] -> [k',i',i-k+j-i'+k',2] : 1 <=
i <= i' <= n && 0 <= k < k' && 1 <= j && k+i' <=
i+k' && i+j+k' <= n+k+i'} union {[k,i,-1,1] ->
[k',i',i-k+k'-i',2] : 1 <= i <= i' <= n && k+i' <
i+k' && 0 <= k && i+k' <= n+k+i'}.

FS = {[1,-1,1] -> [k,i',k-i'+1,2] : 1 <= i' <= k,
n && k < n+i'} union {[i,-1,1] -> [0,i,-1,1] : 1
<= i <= n}.

Range(FS) = {[k,i,k-i+1,2]: 1 <= i <= k, n && k <
n+i} union {[0,i,-1,1]: 1
<= i <= n}.

The loop scannig elements of the set Range(FS) for k<=0
and being produced by the codegen function of the Omega
library is as follows.

for(t2 = 1; t2 <= n; t2++) { // parallel loop
 a[t2][0] = 1; // s1(0,t2,-1,1);
}
for(t1 = 1; t1 <= 2*n-1; t1++)
{
 for(t2 = max(-n+t1+1,1); t2 <= min(n,t1); t2++)
 {
 //parallel loop

a[t2][t1-t2+1] = a[t2-1][t1-t2+1] + a[t2][t1-
t2];

 // s1(t1,t2,t1-t2+1,2);
 }
}

There is no independent statements in the loop.
The pseudocode above was manually transformed to the
parallel code for NVIDIA cards presented below.

//Kernel definitions
__global__ void loop1_gpu(float (*a)[n])
{
 int idx = blockIdx.x, t2;
 int packet = (int)ceil(n / blockDim.x);
 int lb = idx*packet+1;
 int ub = ((idx+1)*packet < n) ? (idx+1)*packet :
n;
 for(int t2 = lb; t2 <= ub; t2++)
 a[t2][0] = 1;
 }

__global__ void loop2_gpu(float (*a)[n], t1)
{
 int idx = blockIdx.x, t2;
 int packet = (int)ceil((max(-n+t1+1,1) -
min(n,t1)) / blockDim.x);
 int lb = idx*packet+max(-n+t1+1,1);
 int ub = ((idx+1)*packet < min(n,t1)) ?
(idx+1)*packet : min(n,t1);
 for(int t2 = lb; t2 <= ub; t2++)
 a[t2][t1-t2+1] = a[t2-1][t1-t2+1] + a[t2][t1-
t2];
}

 int main(int argc, char * argv[]){
 ...

220 PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012

 int threads_per_block = 1;
 int n_blocks = atoi(argv[1]); // number of CUDA
//cores
// Kernel invocation
 loop1_gpu <<< n_blocks, threads_per_block>>>
((float(*)[n])d_A);
cudaSynchronize();
for(t1 = 1; t1 <= 2*n-1; t1++) {
 loop2_gpu <<< n_blocks, threads_per_block>>>
((float(*)[n])d_A, t1);
...
 }
 cudaSynchronize();
}

Figure 2 presents the free schedule for the loop of Example
2 when n=5. The solid lines represent dependences, the
dotted lines represent synchronization barriers between
time partitions.

Fig.2. The free schedule for Example 2 when n=5.

Environment of experiments

 Experiments have been carried out for a massively-
parallel machine, NVIDIA Tesla S1070. The GPU
computing system includes four teraflop processors with
240 cores (960 scalar processor cores). It is equipped with
16 GB GDDR3 memory (4Gb for each processor) with ultra-
fast access (408 GB/sec total bandwidth) and consumes
about 800 watts of power [8].

To connect all four GPUs in a Tesla S1070 to a single
host system, the host must have two available PCI Express
slots corresponding to the NVIDIA switch. The architecture
of a GPU computing system is shown in Figure 3. The
Tesla card has been mounted in a computer with Quad-
Core Xenon E5504 1.6 Ghz CPU, 8GB RAM and
OpenSuse Linux.

 Parallel loops were implemented by means of the
CUDA library [11]. The CUDA C compiler (nvcc) simplifies
many-core programming by enabling code development in
a high-level language and optimizing code to run on NVIDIA
systems. CUDA applications automatically take advantage
of many or few cores in a system, so they can scale from an
entry-level notebook GPUs to racks of GPUs. Tesla S1070
is compatible with the CUDA 1.3 version.
Results of experiments

The presented algorithms were implemented by us in a
tool by means of the Omega library. It generates C-like
pseudo-code scanning synchronization-free slices with
defining variables to be privatized. Using this tool, we have
experimented with loops of the NAS 3.2 benchmark suite
[10].

Fig.3. The architecture of the NVIDIA Tesla S1070 [9]

NAS Parallel Benchmarks (NPB) have been developed

at the NASA Ames Research Centre to study performance
of parallel supercomputers. Benchmarks, which are derived
from computational fluid dynamics (CFD) applications,
consist of five kernels and three pseudo-applications [10].

To assess the efficiency of code produced by the
presented algorithms, the following criteria were taken into
account for choosing NAS loops:
 a loop must be computatively heavy (there are many

NAS benchmarks with constant upper bounds of loop
indices, hence their parallelization is not justified),

 code produced by the algorithm must be parallel (there
are NAS loops that cannot be parallelized),

 structures of chosen loops must be different (there are
many NAS loops of a similar structure).

 Applying these criteria, we selected the following NAS
loops: FT_auxfnct_2 (Fast Fourier Transform Benchmark),
UA_diffuse_4 and UA_setup_16 (both from Unstructured
Adaptive benchmark). The loops are presented in Table 1.

Table 1. Loops for experiments

ua_setup_16

for i=1 to N1 do
 for j=1 to N2 do
 for ip=1 to N3 do
 wdtdr(i,j) = wdtdr(i,j) + wxm1(ip)*dxm1(ip,i)*dxm1(ip,j)
 endfor
 endfor
endfor

ft_auxfnct_2

for i=1 to N1 do
 for k=1 to N2 do
 for j=1 to N3 do
 y(j,k,i)=y(j,k,i)*twiddle(j,k,i)
 x(j,k,i)=y(j,k,i)
 endfor
 endfor
endfor

ua_diffuse_4

for iz=1 to N1 do
 for k=1 to N2 do
 for j=1 to N3 do
 for i=1 to N4 do
 tm2(i,j,iz) = tm2(i,j,iz)+u(i,k,iz)*wdtdr(k,j)
 endfor
 endfor
 endfor
endfor

PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012 221

Table 2. Loops execution times, s.
LOOP ALGORITHM PARAMETERS 1 GPU (seq.

program)
2 GPU 32 GPU 256 GPU 960 GPU DATA

TRANSFER
ua_setup_16 Scheduling N=500 64.202 36,091 2,237 0,567 0,051 1,373096

N=1000 512.89 288,789 18,297 7,276 6,541 1,373096
Slicing N=500 64.202 33,634 2,06 0,308 0,000074 1,375112

N=1000 512.89 269,04 17,131 4,898 3,476 1,378965
ft_auxfnct_2 Scheduling N=200 4,468 2,247 0,138 0,000068 0,000066 0,061973

N=500 67,428 33,959 2,079 0,543 0,000066 0,803661
Slicing N=200 4,468 3,677 0,238 0,000063 0,000068 0,039986

N=500 67,428 58,872 3,578 0,73 0,000068 0,59415
ua_diffuse_4 Scheduling N=1024 58,819 29,384 1,982 1,158 0,866 0,429788

N=2048 238,122 118,651 7,672 3,234 2,311 1,031796
Slicing N=1024 58,819 26,384 1,682 0,543 0,384 0,535126

N=2048 238,122 105,398 6,711 2,013 1,357 0,834596

Table 3. Speed-up and efficiency of parallel loops

LOOP ALGORITHM PARAMETERS
2 GPU 32 GPU 256 GPU 960 GPU

S E S E S E S E
ua_setup_16 Scheduling N=500 1.750 0.875 18.164 0.568 33.800 0.132 46.047 0.048

N=1000 1.772 0.886 26.144 0.817 59.459 0.232 64.981 0.068
Slicing N=500 1.873 0.937 19.090 0.597 38.962 0.152 47.686 0.050

N=1000 1.902 0.951 27.783 0.868 81.930 0.320 105.926 0.110
ft_auxfnct_2 Scheduling N=200 1.962 0.981 22.653 0.708 73.016 0.285 73.018 0.076

N=500 1.963 0.981 23.670 0.740 50.667 0.198 84.894 0.088
Slicing N=200 1.213 0.606 16.217 0.507 112.562 0.440 112.548 0.117

N=500 1.144 0.572 16.304 0.509 51.370 0.201 114.473 0.119
ua_diffuse_4 Scheduling N=1024 1.987 0.994 24.566 0.768 37.315 0.146 45.724 0.048

N=2048 1.998 0.999 27.477 0.859 56.063 0.219 71.543 0.075
Slicing N=1024 2.205 1.102 26.771 0.837 55.053 0.215 64.577 0.067

N=2048 2.249 1.125 31.668 0.990 83.915 0.328 109.033 0.114

 Table 2 shows loop execution time for 1, 2, 32, 256,
and 960 processors). Experiments were carried out for two
different values of the upper bounds of loop indices (see
column 3). Slicing means that parallel programs were
produced by applying the algorithms of extracting
synchronization-free slices[1] while Scheduling stands for
programs being produced on the basis of the algorithm
presented in paper [5]. Both slicing and scheduling permit
for good utilization of many GPUs (up 960 under our
experiments).
 The last column of Table 2 presents the time of data
transfer to/from a graphic card. It is worth to note that the
time of data transfer does not depend on the number of
GPU cores [11]. The time of data transfer comprises the
times of [11]: allocation, sending data to the graphic card,
and fetching data memory of the graphic card.
 Table 3 presents speed-up and efficiency for the studied
loops. The results of experiments demonstrate that
produced parallel programs are scalable: the time of a loop
execution reduces with increasing the number of
processors (up to 960). That is the computation power of
the many-core GPU system is efficiently used. Figure 4
illustrates the loop execution time for 1, 2, 32, 256, 960
GPUs and the time of data transfer between the host and
the graphic card (dt).

Related Work
 The CUDA parallel hardware architecture is
accompanied by the CUDA parallel programming model
that provides a set of abstractions that enable expressing
fine-grained and coarse-grain data and task parallelism.
 Different techniques have been developed to extract
parallelism available in loops. In paper [12], an automatic
polyhedral compilation for GPGPU is presented for the
polyhedral loop parallelizer: LooPo [13].The polytope model
is recognized as useful for parallelizing loop programs for
massively parallel architectures.
 The affine transformation framework, considered in
papers [14-16] unifies a large number of previously

proposed loop transformations. It is implemented in the tool
Pluto - an automatic parallelization]. Version 0.6.2 with
support for generating CUDA code is available. However,
the affine transformation framework does not exploit all
parallelism with synchronization-free slices in some cases
[1].

0 100 200 300 400 500 600

1

2

32

256

960

dt.

Time (seconds)

G

P

U

UA_setup_16 (N=1000)

slicing free‐scheduling

Fig.4. Times for UA_setup_16, n=1000.

Conclusion

Presented in this paper results demonstrate that both
slicing and scheduling based on transitive closure
calculation of dependence relations can be successfully
applied for producing parallel programs foe NVIDIA cards
with many GPUs.

In the future work, we intend to develop algorithms of
extracting parallelism to be utilized simultaneously by
GPUs and CPUs of the same computer.

222 PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012

We thank Piotr Czapiewski from the West Pomeranian
University of Technology for providing a machine with the
card Tesla S1070.

Wydanie publikacji zrealizowano przy udziale środków
finansowych otrzymanych z budżetu Województwa
Zachodniopomorskiego.

REFERENCES

[1]] Beletska, A., Bielecki, W., Cohen, A., Palkowski, M., Siedlecki,
K. : Coarse-grained loop parallelization: Iteration space slicing
vs affine transformations. Parallel Computing, No. 37, (2011),
479-497,

[2] Beletska A., Bielecki W., Siedlecki K., San Pietro P.. Finding
synchronization-free slices of operations in arbitrarily nested
loops. In ICCSA (2), volume 5073 of Lecture Notes in
Computer Science, Springer, (2008), 871-886.

[3] Pugh W., Wonnacott D., An exact method for analysis of value-
based array data dependences. In In Sixth Annual Workshop
on Programming Languages and Compilers for Parallel
Computing. Springer-Verlag, (1993).

[4] The Omega project. http://www.cs.umd.edu/projects/omega.
[5] Bielecki W., Palkowski M., Using Free Scheduling for

Programming NVIDIA Cards, Proceedings of the 2nd Facing
the Multicore-Challenge Conference, Karlsruhe, Germany,
(2011).

[6] Bastoul C., Code generation in the polyhedral model is easier
than you think, In IEEE Intl. Conf. on Parallel Architectures and
Compilation Techniques PACT’04, (2004).

[7] Verdoolaege S., Integer Set Library: Manual, version 0.0.9,
http://www.kotnet.org/~skimo/isl/manual.pdf, (2011).

[8] Specification, Tesla S1070 GPU Computing System,
http://www.nvidia.com/docs/IO/43395/SP-04154-001_v02.pdf,
(2008).

[9] Tesla Data Center Solutions, S1070 Product Brief,
http://www.nvidia.com/object/preconfigured-clusters.html,
(2011).

[10] The NAS benchmark suite, http://www.nas.nasa.gov.
[11] NVIDIA CUDA, Programming guide,

http://developer.download.nvidia.com/compute/cuda/4_0/toolkit
/docs/CUDA_C_Programming_Guide.pdf, version 4.0, (2011).

[12] Lengauer, C. Loop Parallelization in the Polytope Model. In
Eike Best, editor, CONCUR'93, number 715 in Lecture Notes in
Computer Science, Springer-Verlag, (1993), 398–416.

[13] Baghdadi, S., Größlinger, A., Cohen, A. Putting Automatic
Polyhedral Compilation for GPGPU to Work. In Proc. of
Compilers for Parallel Computers (CPC), (2010).

[14] Feautrier, P., Some efficient solutions to the affine scheduling
problem, part I and II, one and multidimensional time,
International Journal of Parallel Programming 21, (1992), pp.
313-348 and 389- 420.

[15] Lim, A., Lam, M., Cheong, G., An affine partitioning algorithm to
maximize parallelism and minimize communication. In ICS'99,
ACM Press, (1999), 228-237,

[16] PLUTO - An automatic parallelizer and locality optimizer for
multicores, http://pluto-compiler.sourceforge.net.

Authors: prof. dr hab. inż. Włodzimierz Bielecki,
Zachodniopomorski Uniwersytet Technologiczny, Katedra Inżynierii
Oprogramowania, ul. Żołnierska 49, 71-210 Szczecin, E-mail:
wbielecki@wi.zut.edu.pl; dr inż. Marek Pałkowski,
Zachodniopomorski Uniwersytet Technologiczny, Katedra Inżynierii
Oprogramowania, ul. Żołnierska 49, 71-210 Szczecin, E-mail:
mpalkowski@wi.zut.edu.pl;

