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Abstract. Massively parallel processing is a type of computing that uses many separate CPUs or GPUs running in parallel to execute a single 
program. Because most computations are contained in program loops, automatic extraction of parallelism available in  loops is extremely important 
for many-core systems. In this paper, we study speed-up and scalability of parallel code scanning synchronization-free slices and time partitions by 
means of  a 960 CUDA Cores machine, Tesla S1070. 
 
Streszczenie. Przetwarzanie równoległe na wielką skalę wykonywane jest za pomocą wielu procesorów (również graficznych) wykonujących 
jednocześnie instrukcje pojedynczego programu. Ponieważ większość obliczeń zlokalizowana jest w pętlach programowych, automatyczne 
zrównoleglanie kodu jest ważne dla maszyn wielordzeniowych. W artykule zbadano przyspieszenie i skalowalność równoległego kodu złożonego z 
niezależnych fragmentów lub harmonogramowania swobodnego za pomocą maszyny Tesla S1070 zbudowanej z 960 rdzeni CUDA.  
Metody tworzenia aplikacji równoległych dla wielordzeniowych komputerów  
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Introduction 

Massively-parallel architectures are able to execute 
thousands of concurrent threads. These systems are 
scalable and allow software users to boost computing 
performance simply by adding processors. Demand for 
high-computing performance in science and industry 
requires automated tools permitting for exposing parallelism 
for such systems. 

Because most computations are contained in program 
loops, automatic extraction of parallelism available in loops 
is extremely important for many-core systems, allowing us 
to produce parallel code from existing sequential 
applications and to create multiple threads that can be 
easily scheduled to achieve high program performance. 

Papers  [1, 2] present algorithms to extract coarse-
grained parallelism represented with synchronization-free 
slices consisting of loop statement instances. Those 
algorithms are base on the Iteration Space Slicing 
Framework (ISSF) that uses the transitive closure of 
dependence relations to extract parallelism. Paper [5] 
introduces an approach to extract fine-grained parallelism 
representing free scheduling for statement instances of 
affine loops. It also uses the transitive closure of 
dependence relations to expose parallelism Under the free 
schedule, loop statement instances are executed as soon 
as their operands are available. 

In the current paper, we focus on the problem of the 
speed-up, efficiency, and scalability of parallel loops for a 
many-core machine, NVIDIA Tesla S1070 being produced 
by means of slicing and free-scheduling. The Cost of 
synchronization and communication is also considered. 
Experimental results are presented 
 
Background 

In this paper, we deal with affine loop nests where  
 for given loop indices, lower and upper bounds as well 

as array subscripts and conditionals are affine functions 
of surrounding loop indices and possibly of structure 
parameters (i.e., parameterized loop bounds), 

 the loop steps are known positive constants. 
A nested loop is called perfectly nested if all its 

statements are comprised within the innermost nest. 
Otherwise, the loop is called imperfectly nested.  

A statement instance s(I) is a particular execution of a 
loop statement s for a given iteration I. 

Two statement instances s1(I) and s2(J) are dependent if 
both access the same memory location and if at least one 

access is a write. s1(I) and s2(J) are called the source and 
destination of a dependence, respectively, provided that 
s1(I) is lexicographically fewer than s2(J) (we write this  as  
(s1(I)   s2(J)), i.e., s1(I) is always executed before s2(J)). 

The approach to extract synchronization-free parallelism 
in program loops by means of the Iteration Space Slicing 
Framework requires an exact representation of loop-carried 
dependences and consequently an exact dependence 
analysis which detects a dependence if and only if it 
actually exists.  To describe and implement algorithms, we 
choose the dependence analysis proposed by Pugh and 
Wonnacott [3] where dependences are represented by 
dependence relations whose constraints are described in 
the Presburger arithmetic (built of affine equalities and 
inequalities, logical and existential operators); the Omega 
library is used for computations over such relations [4]. 

A dependence relation is a tuple relation of the form 
{[input list]   [output list] : constraints}; where input list 
and output list are the lists of variables and/or expressions 
used to describe input and output tuples and constraints is 
a Presburger formula describing constraints imposed upon 
input list and output list. 

We use standard operations on relations and sets, such 
as intersection ( ), union ( ), difference (-), domain of 
relation (domain(R)), range of relation (range(R)), relation 
application (given a relation R and set S, R(S) = {[e’]:  e 
  S, e e’R), positive transitive closure (given a 

relation R, R+ = {[e]   [e’]: e   e’   R ||   e’’ s.t. e   
e’’   R & e’’ e’R+}), transitive closure (R* = R+   I, 
where I is the identity relation). These operations are 
described in detail in [11]. 

To permit for applying the operations mentioned above 
on relations and sets, we have to preprocess them by 
means of the following two steps. 
1. Make the sizes of input and output tuples of 

dependence relations to be the same by inserting the 
value ”-1” at the rightmost positions of correspondent 
tuples 

2. Insert identifiers of loop statements in the last position of 
input and output tuples. 

  Inserting ”-1” does not introduce any false (not existing) 
dependence after preprocessing because existing 
programming languages suppose that loop indices cannot 
be negative. It can be obviously omitted when we deal with 
perfectly nested loops.   
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   Inserting loop statement identifiers makes clear which 
statements originate sources and destinations of 
dependences. This step of the preprocessing procedure 
can be skipped when the loop body comprises the only 
statement. 
The formal presentation of the preprocessing procedure is 
introduced in paper [2]. 
 
Extracting coarse-grained parallelism in program loops 

Definition 1. Given a dependence graph, D, defined by 
a set of dependence relations, S, a slice is a weakly 
connected component of graph D, i.e., a maximal subgraph 
of D such that for each pair of vertices in the subgraph there 
exists a directed or undirected path. 

If there exist two or more slices in D, then taking into 
account the above definition, we may conclude that all 
slices are synchronization-free, i.e., there is no dependence 
between them. 

Definition 2. An ultimate dependence 
source(destination) is a source (destination) that is not the 
destination (source) of another dependence. Ultimate 
dependence sources and destinations represented by 
relation R can be found by means of the following 
calculations: (domain(R) - range(R)) and (range(R) - 
domain(R)), respectively. 

Definition 3. The source(s) of a slice is an ultimate 
dependence source(s) that this slice contains. 

Definition 4. The representative loop statement 
instance of a slice is its lexicographically minimal source. 

Further on in this paper, we refer to representative loop 
statement instances as to representatives. 

The approach to extract synchronization-free slices [1] 
relies on the transitive closure of an affine dependence 
relation describing all dependences in a loop and consists 
of two steps. First, representatives of slices are found in 
such a manner that each slice is represented with its 
lexicographically minimal statement instance. Next, slices 
are reconstructed from their representatives and code 
scanning these slices is generated. 

Given a dependence relation R describing all 
dependences in a loop, we can find a set of statement 
instances, SUDS, describing all ultimate dependence sources 
of slices as SUDS=domain(R) - range(R). In order to find 
elements of SUDS   that are representatives of slices, we 
build a relation, RUSC, that describes all pairs of the ultimate 
dependence sources that are transitively connected in a 
slice, as follows: 

 
(1) )},(*)'(*,',',:]'[]{[: eReReeSeeeeR UDSUSC         

 
where R*  is the transitive closure of relation R. 

The condition  (e   e’) in the constraints of relation 
RUSC  means that e is lexicographically smaller than e’. 
Such a condition guarantees that the lexicographically 
smallest element from e and e’ will always appear in the 
input tuple, i.e., the lexicographically smallest source of a 
slice (its representative source) can never appear in the 
output tuple. The intersection )(*)'(* eReR   in the 

constraints of RUSC  guarantees that elements e and e’  are 
transitively connected, i.e., they are the sources of the 
same slice. 

Set Srepr containing representatives of each slice is 
found as Srepr= SUDS- range(RUSC).  

Each element e of set Srepr is the lexicographically 
minimal statement instance of a synchronization-free slice. 
If e is the representative of a slice with multiple sources, 
then the remaining sources of this slice can be found 
applying relation (RUSC)*  to e, i.e., (RUSC)*(e). If a slice has 

the only source, then (RUSC)*(e)=e. The elements of a slice 
represented with e can be found applying relation R* to the 
set of sources of this slice: Sslice= R*((RUSC)*(e)). 
 Let us illustrate the presented technique by means of 
the following parameterized loop. 
 
Example 1 
for(i=1; i<=N; i++) 
  for(j=1; j<=N; j++) 
     a[i][j] = a[i][j-1]; 
 
There is the following dependence relation returned by 
Petit. 
 
R1 = {[i,j]->[i,j+1] : 1 <= i <= n && 1 <= j < n} 
 
The following set 
 
{[i,1] : 1 <= i <= n && 2 <= n} 
 
Represents sources of slices. 
 
Applying algorithm Gen_affine for independent slices 
extraction [1] and the codegen function from the Omega 
Calculator [4], we generate the following parallel code: 
 
if (n >= 2)  
  par for(t1 = 1; t1 <= n; t1++) { 
    a[t1][1] = a[t1][0]; 
    if (n >= t1 && t1 >= 1)  
      for(t2 = 2; t2 <= n; t2++)  
        a[t1][t2] = a[t1][t2-1]; 
  } 
 
Next, we manually transform the above code to the parallel 
CUDA code: 
 
// Kernel that executes on the CUDA device 
__global__ void slice((float(*a)[N], int N, int 
packet) 
{ 
 int idx = blockIdx.x; 
 int t1, t2; 
 int lb = idx*packet+1; 
 int ub = ((idx+1)*packet<N) ? (idx+1)*packet:N; 
 if (N >= 2)  
  for(t1 = lb; t1 <= ub; t1++) { 
   a[t1][1] = a[t1][0]; 
   if (N >= t1 && t1 >= 1)  
    for(t2 = 2; t2 <= n; t2++)  
     a[t1][t2] = a[t1][t2-1]; 
  } 
 } 
// main program 
... //cudaAlloc and cudaMemCopy FromHostToDevice 
slice<<< N_CPU, 1 >>>((float(*)[N])a, N, packet); 
... // cudaMemCopy FromDeviceToHost 
 
 

 
Fig.1. Iteration space and dependences of the loop 
 
 The main function of this code runs kernels of parallel 
loops. The value of variable n_blocks represents the 
number of threads that execute a single block of 
independent loop statement instances, i.e., the number of 

j

i 
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engaged CUDA cores. The value of  variable idx defines the 
identifier of a block; the values of variables lb and ub 
indicate the lower and upper bounds of the parallel loop, 
respectively; variable packet is to represent the number of 
iterations in a block. 
Figure 1 presents slices for Example 1 when n=4. 
 
Extracting fine-grained parallelism in program loops 
     Definition 5. The free schedule is the function that 
assigns statement instances (for execution) as soon as their 
operands are available, that is, it is mapping 

LD: such that: 
 

(2)  




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 Under the free schedule, loop statement instances are 
executed as soon as their operands are available. An 
approach for extracting parallel code scanning time 
partitions is presented in  paper [5]. 
 Given a dependence relation R describing all 
dependences in a loop, we create the relation R’ by 
inserting variables k and and k+1 into the first position of the 
input and output tuples of relation R. Variable k is to present 
the time of a partition (a set of statement instances to be 
executed at time k). Next, we calculate the transitive closure 
of relation R’, R’*, and form the following relation: 
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where (R’)*\{[0,X]} means that the domain of relation 

(R’)* is restricted to the set including ultimate dependence 
sources only (elements of this set  
belong to the first time partition); the constraint 

]}),0\{[)'((),'.(.'( XRRangeYktskk   guarantees 

that partition k includes only those statement instances 
whose operands are available, i.e., each statement instance 
will belong to one time partition only.  

The first element of the tuple representing the set 
Range(FS) points out the time of a partition while the last 
element of that exposes what is the statement whose 
instance(iteration) is defined by the tuple elements 2 to n-1, 
where n is the number of the tuple elements of a 
preprocessed relation. Taking the above consideration into 
account and provided that the constraints of relation FS are 
affine, the set Range(FS) is used to generate parallel code 
applying any well-known technique to scan its elements in 
the lexicographic order, for example the techniques 
presented in papers [6-7].  
 The outermost sequential loop of such code scans 
values of variable k (representing the time of partitions) 
while inner parallel loops scan independent instances of 
partition k. 
 Let us illustrate the presented technique by means of 
the following imperfectly-nested and parameterized loop. 
 
Example 2 
for(i=1; i<=n; i++){ 
 a[i][0] = 1; //s1 
  for(j=1; j<=n; j++){ 
   a[i][j] = a[i-1][j] + a[i][j-1]; //s2 
  } 
} 
There are the three dependence relations returned by Petit 
 
R1 ={[i,-1,1] -> [i,1,2] : 1 <= i <= n}; 

R2 ={[i,j,2] -> [i+1,j,2] : 1 <= i < n && 1 <= j 
<= n}; 
R3 ={[i,j,2] -> [i,j+1,2] : 1 <= i <= n && 1 <= j 
< n}. 

 
Applying the presented algorithm, we get the following 
results being produced by means of the Omega calculator. 
 
R' = {[k,i,-1,1] -> [k+1,i,1,2] : 1 <= i <= n && 
0 <= k} union {[k,i,j,2] -> [k+1,i+1,j,2] : 1 <= 
i < n && 1 <= j <= n && 0 <= k} union {[k,i,j,2] 
-> [k+1,i,j+1,2] : 1 <= i <= n && 1 <= j < n && 0 
<= k}. 
 
 R'+ = {[k,i,j,2] -> [k',i',i-k+j-i'+k',2] : 1 <= 
i <= i' <= n && 0 <= k < k' && 1 <= j && k+i' <= 
i+k' && i+j+k' <= n+k+i'} union {[k,i,-1,1] -> 
[k',i',i-k+k'-i',2] : 1 <= i <= i' <= n && k+i' < 
i+k' && 0 <= k && i+k' <= n+k+i'}. 
 
FS = {[1,-1,1] -> [k,i',k-i'+1,2] : 1 <= i' <= k, 
n && k < n+i'} union {[i,-1,1] -> [0,i,-1,1] : 1 
<= i <= n}. 
  
Range(FS) = {[k,i,k-i+1,2]: 1 <= i <= k, n && k < 
n+i} union {[0,i,-1,1]: 1 
<= i <= n}. 
 
The loop scannig elements of the set Range(FS) for k<=0 
and being produced by the codegen function of the Omega 
library is as follows. 
 
for(t2 = 1; t2 <= n; t2++) { // parallel loop 
 a[t2][0] = 1; // s1(0,t2,-1,1); 
} 
for(t1 = 1; t1 <= 2*n-1; t1++) 
{ 
 for(t2 = max(-n+t1+1,1); t2 <= min(n,t1); t2++) 
 {  
   //parallel loop 

a[t2][t1-t2+1] = a[t2-1][t1-t2+1] + a[t2][t1- 
t2];  

   // s1(t1,t2,t1-t2+1,2); 
 } 
} 
 
There is no independent statements in the loop. 
The pseudocode above was manually transformed to the 
parallel code for NVIDIA cards presented below. 
 
//Kernel definitions 
__global__ void loop1_gpu(float (*a)[n]) 
{ 
 int idx = blockIdx.x, t2; 
 int packet = (int)ceil(n / blockDim.x); 
 int lb = idx*packet+1; 
 int ub = ((idx+1)*packet < n) ? (idx+1)*packet :  
n; 
 for(int t2 = lb; t2 <= ub; t2++)  
  a[t2][0] = 1;  
 } 
 
__global__ void loop2_gpu(float (*a)[n], t1) 
{ 
 int idx = blockIdx.x, t2; 
 int packet = (int)ceil((max(-n+t1+1,1) -   
min(n,t1)) / blockDim.x); 
 int lb = idx*packet+max(-n+t1+1,1); 
 int ub = ((idx+1)*packet < min(n,t1)) ?  
(idx+1)*packet : min(n,t1); 
 for(int t2 = lb; t2 <= ub; t2++)  
  a[t2][t1-t2+1] = a[t2-1][t1-t2+1] + a[t2][t1-
t2]; 
} 
 
 int main(int argc, char * argv[]){ 
 ... 
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 int threads_per_block = 1; 
 int n_blocks = atoi(argv[1]); // number of CUDA 
//cores 
// Kernel invocation  
 loop1_gpu <<< n_blocks, threads_per_block>>> 
((float(*)[n])d_A); 
cudaSynchronize(); 
for(t1 = 1; t1 <= 2*n-1; t1++) { 
 loop2_gpu <<< n_blocks, threads_per_block>>> 
((float(*)[n])d_A, t1); 
... 
 } 
 cudaSynchronize(); 
} 
 
Figure 2 presents the free schedule for the loop of Example 
2 when n=5. The solid lines represent dependences, the 
dotted lines represent synchronization barriers between 
time partitions. 
 

 
Fig.2. The free schedule for Example 2 when n=5. 
 
Environment of experiments 

 Experiments have been carried out for a massively-
parallel machine, NVIDIA Tesla S1070. The GPU 
computing system includes four teraflop processors with 
240 cores (960 scalar processor cores). It is equipped with 
16 GB GDDR3 memory (4Gb for each processor) with ultra-
fast access (408 GB/sec total bandwidth) and consumes 
about 800 watts of power [8].  

To connect all four GPUs in a Tesla S1070 to a single 
host system, the host must have two available PCI Express 
slots corresponding to the NVIDIA switch. The architecture 
of a GPU computing system is shown in Figure 3.  The 
Tesla card has been mounted in a computer with Quad-
Core Xenon E5504 1.6 Ghz CPU, 8GB RAM and 
OpenSuse Linux. 

 Parallel loops were implemented by means of the 
CUDA library [11]. The CUDA C compiler (nvcc) simplifies 
many-core programming by enabling code development in 
a high-level language and optimizing code to run on NVIDIA 
systems. CUDA applications automatically take advantage 
of many or few cores in a system, so they can scale from an 
entry-level notebook GPUs to racks of GPUs. Tesla S1070 
is compatible with the CUDA 1.3 version. 
Results of experiments 

The presented algorithms were implemented by us in a 
tool by means of the Omega library. It generates C-like 
pseudo-code scanning synchronization-free slices with 
defining variables to be privatized. Using this tool, we have 
experimented with loops of the NAS 3.2 benchmark suite 
[10].  
 

 
Fig.3. The architecture of the NVIDIA Tesla S1070 [9] 

 
NAS Parallel Benchmarks (NPB) have been developed 

at the NASA Ames Research Centre to study performance 
of parallel supercomputers. Benchmarks, which are derived 
from computational fluid dynamics (CFD) applications, 
consist of five kernels and three pseudo-applications [10]. 

To assess the efficiency of code produced by the 
presented algorithms, the following criteria were taken into 
account for choosing NAS loops:  
 a loop must be computatively heavy (there are many 

NAS benchmarks with constant upper bounds of loop 
indices, hence their parallelization is not justified),  

 code produced by the algorithm must be parallel (there 
are NAS loops that cannot be parallelized),  

 structures of chosen loops must be different (there are 
many NAS loops of a similar structure). 

 Applying these criteria, we selected the following NAS 
loops: FT_auxfnct_2 (Fast Fourier Transform Benchmark), 
UA_diffuse_4 and UA_setup_16 (both from Unstructured 
Adaptive benchmark). The loops are presented in Table 1. 
  
Table 1. Loops for experiments 

ua_setup_16 
 
for i=1 to N1 do 
  for j=1 to N2 do 
    for ip=1 to N3 do 
      wdtdr(i,j) = wdtdr(i,j) + wxm1(ip)*dxm1(ip,i)*dxm1(ip,j) 
    endfor 
  endfor 
endfor 
 
ft_auxfnct_2 
 
for i=1 to N1 do 
  for k=1 to N2 do 
    for j=1 to N3 do 
      y(j,k,i)=y(j,k,i)*twiddle(j,k,i) 
      x(j,k,i)=y(j,k,i) 
    endfor 
  endfor 
endfor 
 
ua_diffuse_4 
 
for iz=1 to N1 do 
  for k=1 to N2 do 
    for j=1 to N3 do 
      for i=1 to N4 do 
        tm2(i,j,iz) = tm2(i,j,iz)+u(i,k,iz)*wdtdr(k,j) 
      endfor 
    endfor 
  endfor 
endfor 
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Table 2. Loops execution  times, s. 
LOOP ALGORITHM PARAMETERS 1 GPU (seq. 

program) 
2 GPU 32 GPU 256 GPU 960 GPU DATA 

TRANSFER 
ua_setup_16 Scheduling N=500 64.202 36,091 2,237 0,567 0,051 1,373096 

N=1000 512.89 288,789 18,297 7,276 6,541 1,373096 
Slicing N=500 64.202 33,634 2,06 0,308 0,000074 1,375112 

N=1000 512.89 269,04 17,131 4,898 3,476 1,378965 
ft_auxfnct_2 Scheduling N=200 4,468 2,247 0,138 0,000068 0,000066 0,061973 

N=500 67,428 33,959 2,079 0,543 0,000066 0,803661 
Slicing N=200 4,468 3,677 0,238 0,000063 0,000068 0,039986 

N=500 67,428 58,872 3,578 0,73 0,000068 0,59415 
ua_diffuse_4 Scheduling N=1024 58,819 29,384 1,982 1,158 0,866 0,429788 

N=2048 238,122 118,651 7,672 3,234 2,311 1,031796 
Slicing N=1024 58,819 26,384 1,682 0,543 0,384 0,535126 

N=2048 238,122 105,398 6,711 2,013 1,357 0,834596 
 
Table 3. Speed-up and efficiency of parallel loops 

LOOP ALGORITHM PARAMETERS 
2 GPU 32 GPU 256 GPU 960 GPU 

S E S E S E S E 
ua_setup_16 Scheduling N=500 1.750 0.875 18.164 0.568 33.800 0.132 46.047 0.048 

N=1000 1.772 0.886 26.144 0.817 59.459 0.232 64.981 0.068 
Slicing N=500 1.873 0.937 19.090 0.597 38.962 0.152 47.686 0.050 

N=1000 1.902 0.951 27.783 0.868 81.930 0.320 105.926 0.110 
ft_auxfnct_2 Scheduling N=200 1.962 0.981 22.653 0.708 73.016 0.285 73.018 0.076 

N=500 1.963 0.981 23.670 0.740 50.667 0.198 84.894 0.088 
Slicing N=200 1.213 0.606 16.217 0.507 112.562 0.440 112.548 0.117 

N=500 1.144 0.572 16.304 0.509 51.370 0.201 114.473 0.119 
ua_diffuse_4 Scheduling N=1024 1.987 0.994 24.566 0.768 37.315 0.146 45.724 0.048 

N=2048 1.998 0.999 27.477 0.859 56.063 0.219 71.543 0.075 
Slicing N=1024 2.205 1.102 26.771 0.837 55.053 0.215 64.577 0.067 

N=2048 2.249 1.125 31.668 0.990 83.915 0.328 109.033 0.114 
 
 Table 2 shows loop execution time for 1,  2, 32, 256, 
and 960 processors).  Experiments were carried out for two 
different values of the upper bounds of loop indices (see 
column 3). Slicing means that parallel programs were 
produced by applying the algorithms of extracting  
synchronization-free slices[1] while Scheduling stands for 
programs being produced on the basis of  the algorithm 
presented in paper [5].  Both slicing and scheduling permit  
for good utilization of many GPUs (up 960 under our 
experiments). 
   The last column of Table 2 presents the time of data 
transfer to/from a graphic card.  It is worth to note that the 
time of data transfer does not depend on the number of 
GPU cores [11]. The time of data transfer comprises the 
times of [11]: allocation, sending data to the graphic card, 
and fetching data memory of the graphic card.  
 Table 3 presents speed-up and efficiency for the studied 
loops. The results of experiments demonstrate that 
produced parallel programs are scalable: the time of a loop 
execution reduces with increasing the number of 
processors (up to 960). That is the computation power of 
the    many-core GPU system is efficiently used. Figure 4 
illustrates the loop execution time for 1, 2, 32, 256, 960 
GPUs and the time of data transfer between the host and 
the graphic card (dt). 
 
Related Work 
 The CUDA parallel hardware architecture is 
accompanied by the CUDA parallel programming model 
that provides a set of abstractions that enable expressing 
fine-grained and coarse-grain data and task parallelism.
 Different techniques have been developed to extract 
parallelism available in loops. In paper [12], an automatic 
polyhedral compilation for GPGPU is presented for the 
polyhedral loop parallelizer: LooPo [13].The polytope model 
is recognized as useful for parallelizing loop programs for 
massively parallel architectures.  
 The affine transformation framework, considered in 
papers [14-16] unifies a large number of previously 

proposed loop transformations. It is implemented in the tool 
Pluto - an automatic parallelization].  Version 0.6.2 with 
support for generating CUDA code is available. However, 
the affine transformation framework does not exploit all 
parallelism with synchronization-free slices in some cases 
[1]. 
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Fig.4. Times for UA_setup_16, n=1000. 
 
Conclusion 

Presented in this paper results demonstrate that both 
slicing and scheduling based on transitive closure 
calculation of dependence relations can be successfully 
applied for producing parallel programs foe NVIDIA cards 
with many GPUs. 

In the future work, we intend to develop algorithms of 
extracting parallelism to be utilized simultaneously by  
GPUs  and  CPUs of the same computer. 
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