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Dependence analysis and extraction of coarse-grained
parallelism for parameterized perfectly-nested loops

Abstract. This paper expands an approach presented in [1] to extraction of coarse-grained parallelism available in parameterized uniform and
quasi-uniform perfectly-nested loops. It infroduces a dependence analysis that is characterized by a polynomial time complexity and enables
computing dependence distance vectors when the Petit dependence analyser fails to produce dependences. It permits to examine the performance
of the approach for all parameterized perfectly-nested loops from the NAS Parallel Benchmark Suite.

Streszczenie. W artykule przedstawiono rozwinigcie zaprezentowanego we wcze$niejszej pracy [1] podej$cia do ekstrakcji gruboziarnistej
réwnolegto$ci w jednorodnych oraz quasi-jednorodnych petlach programowych idealnie zagniezdzonych. Rozwiniecie uprzednich wynikéw zostato
osiggniete poprzez wprowadzenie analizy zalezno$ci o wielomianowej ztozono$ci obliczeniowej jednoczes$nie umozliwiajgcej obliczenie wektorow
zaleznosci w tych przypadkach, w ktérych uprzednio wykorzystany analizator zalezno$ci Petit sygnalizowat brak moZzliwosci analizy Zrédfa.
Stworzyto to ostatecznie warunki do oceny skuteczno$ci dziatania proponowanego podejscia dla wszystkich sparametryzowanych petli idealnie
zagniezdzonych zawartych w zestawie testowym NAS Parallel Benchmark Suite (Analiza zalezno$ci oraz ekstrakcja gruboziarnistej

réwnoleglosci sparametryzowanych petli idealnie zagniezdzonych).
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Introduction

In paper [1] an approach is presented that enables the
extraction of coarse-grained parallelism available in
parameterized perfectly-nested static-control loops, where
loop bounds as well as array subscripts are symbolic
parameters. Most steps of the approach are characterized
by a polynomial time complexity while other contemporary
outstanding methods for extracting coarse-grained
parallelism, such as [2, 3, 4], may require much time (even
hundred of hours) and memory for calculations. This is why
there exists a strong need in developing algorithms
characterized by reduced time and memory complexities.
Carried out experiments by the authors for the NAS Parallel
Benchmark Suite [5] demonstrate that the proposed
approach is efficient and very fast. In [1] the authors use the
Petit dependence analysis tool [6], which fails to produce
dependences for 28 loops. Moreover, Petit's calculations
are based on the Presburger arithmetic which in general is
not characterized by polynomial time complexity.

The main purpose of this paper is to expand the
approach presented in [1] by introducing a dependence
analysis that is characterized by a polynomial time
complexity and to examine the performance of the
approach for all parameterized perfectly-nested loops from
the NAS Parallel Benchmark Suite.

Background

In this section, we briefly introduce necessary
preliminaries which are used throughout this paper.

The following concepts of linear algebra are used in

the approach presented in this paper: a polyhedron, lattice,
the Hermite Normal Form of the matrix and its uniqueness,
Hermite decomposition, affine lattice canonical form. Details
can be found in papers [7, 8].
Definition 1 (Congruence relation, modulus matrix). Let y
and z be two d-dimensional integral vectors and D be some
integral d x d matrix of full row rank. We say that y is
congruent to z modulo the column image of D, written:

y=z mod D,
if and only if the difference z—y is equal D x x for some

d-dimensional integral vector x e Z° Matrix D is called the
modulus matrix [9].

Definition 2 (Equivalence relation). Matrix D yields an
equivalence relation, denoted by ~p, which is defined by
y ~p z if and only if y= zmod D [9].

Definition 3 (Equivalence class). An equivalence class in a
set is the subset of all elements which are in equivalence
relation ~p. The number of equivalence classes of ~p, is
denoted by vol(D), the volume of D, which is the absolute
value of the determinant of D. If the determinant of D is
zero, then D does not have full row rank and thus ~p has
the infinite number of equivalence classes. An equivalence
class of ~p is also called a lattice [9].

Definition 4 (Representatives). The set of all integral vectors
in the parallelepiped R(D) defined by the columns of D:

R(D)={ez|x=D-aacrR 0<ax<l],

defines a set of representatives for the equivalence classes
of ~p [9].

In this paper, we deal with the following definitions

concerned program loops: iteration space (IS), loop domain
(index set), parameterized loops, perfectly-nested loops,
dependence, dependence distance set, dependence
distance vector, uniform dependence, non-uniform
dependence, whose explanations are given in papers
[3, 10].
Definition 5 (Uniform loop, quasi-uniform loop). We say that
a parameterized loop is uniform if it induces dependences
represented with the finite number of uniform dependence
distance vectors [3]. A parameterized loop is quasi-uniform
if all its dependence distance vectors can be represented by
a linear combination of the finite number of linearly
independent vectors with constant coordinates.

Let us consider the parameterized dependence distance
vector (N,2). It can be represented as the linear
combination of the two linearly independent vectors (0,2)
and (1,0) as follows (0,2) + a x (1,0), where a € Z.

Definition 6 (Dependence Sources Polyhedron). Given a
dependence distance vector ds 7, a dependence sources
polyhedron DSP(ds,7) is the set of all the values of iteration

vector ig such that there exist dependences between

S(z:) and T(g+dS’T).
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Definition 7 (Polyhedral Reduced Dependence Graph).
A Polyhedral Reduced Dependence Graph (PRDG) is the
graph where a vertex stands for every statement S and an
edge connects statements S and T whose instances are
dependent. The number of edges between vertices S and T

is equal to the number of vectors dsr € Ds 7. Every edge is
labelled with a dependence distance vector dsr and
a dependence sources polyhedron P(ds 7).

In the next section of the paper, we analyse the time
complexity of the proposed approach in a
machine-independent way of assessing the performance of
algorithms. For this purpose, the RAM (Random Access
Machine) model of computation is used. Under the RAM
model, we measure run-time by counting up an upper
bound, O, on the number of steps an algorithm takes on a
given problem instance. Details on the model and the time
complexity analysis can be found in paper [11].

Approach to calculating dependence distance vectors
and extracting parallelism

In this section, we expand the approach presented in [1]
to extraction of equivalence classes for both uniform and
quasi-uniform loops on the step of calculating dependence
distance vectors which is characterized by a polynomial
time complexity.

Calculating dependence distance vectors
To find dependence distance vectors, a system of
equations should be built for each pair of the same named

variables ID(A4;1+ By), ID(A4,1+ B,) that are located in
the loop body on both hand sides of assignment
statements, the right and the left, or on the left-hand sides
only, where Ay, Az are matrices of dimensions m x n, By, By
are m-dimensional vectors. This system can be written as
follows:

—A27:§2—B1
I

~

SIS
ST

-

For a pair of dependent iterations, the source is the iteration
that is lexicographically less.

In system (1), vector I describes all the iterations that
form the sources of pairs of dependent iterations, while
vector J =1+ D describes destinations of those, D is the
dependence vector. To obtain correct results, all dependent
iterations have to be executed in lexicographical order [1].

To determine vector D , we have to solve system (1). From
the second equation, we have:

) J=I1+D.
Substituting (2) into the first equation of (1), we obtain:
3) AyD+(4y — 4 )[ = B1 - B>.

A solution to equation (3) is a dependence distance vector
D with integer coordinates. When there does not exist any
solution to equation (3), the loop does not expose any
dependences. Equation (3) can be solved by means of the
Gaussian elimination algorithm whose time complexity is
discussed later.

Consider the following loop:

232

for(i = 1; 1 <= 4; i++)
for( = 1; j <= 3; j++)
alill = ali+110]+alil+1];

For this loop, there exist two dependence vectors:

5[] o -1

Extracting equivalence classes for both uniform and
quasi-uniform loops

Input  : A parameterized perfectly--nested uniform or
quasi-uniform loop
Output The parallelized loops scanning independent
code fragments
Method:
1) Calculate dependence distance vectors. Find
dependencies in parameterized perfectly-nested

uniform or quasi-uniform loop. Work out dependence
distance vectors using the approach presented above.

2) Replace all parameterized dependence distance
vectors. Replace each parameterized dependence
distance vector with a linear combination of vectors
with constant coordinates. For this purpose apply the
algorithm presented in [12].

3) Form a dependence distance set. Form matrix D,
D e 7™, whose m columns are all non-parameterized
dependence distance vectors ds 7, corresponding to the
edges of PRDG. Associate row k of D™ with a loop
index ik, k=1,2,...,n where n is the number of loop
indices (i.e. surrounding loops).

4) Form the basis of the lattice from the dependence
distance set. Transform matrix D into two sub-matrices
D', D’ e Z"and D”, D” € Z™*™ such that I rows of D',
1</<n, are linearly independent and (n - /) rows of D"
are linearly dependent. When interchanging two rows,
interchange also the loop indices associated with these
rows.

5) Find lattice canonical form. Transform sub-matrix D' to
the Hermite Normal Form:

D'=HxU=[B 0]xU,Bez™,

preserving loop indices associated with the rows of D"
Note that the lattice canonical form represents the
equivalence relation.

6) Find representatives for equivalence classes. Using B,
calculate a set of representatives (one for each
equivalence class) depending on the following cases:
a) [I=n: define a set R(B) of representatives for

equivalence classes as the set of all integral
vectors in the parallelepiped defined by the
columns of B,

RQﬂ:@ezm=waaeRKOSas¢,

b) I<n: find the first | coordinates of representatives
for equivalence classes as follows:

R@U:Wezﬂﬂ=BW%aeM95asﬁ’

and enlarge matrix B' to matrix B by inserting the
last n-/ zero rows.
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7) Find equivalence classes. Using representatives h,
h e R(B), form the following polyhedra that specifies
equivalence classes:

P:{y|y:h+B><z s.t. heR(B)/\zeZ”/\yeIS}.

Each equivalence class represents an independent
subset of statement instances which are represented by
an equivalence relation.

8) Generate parallel loops. Apply any well-known code
generation algorithm to generate parallel outer loops
scanning a set of representatives R(B) and sequential
inner loops enumerating in the lexicographical order
the elements of set P for each equivalence class
represented by h.

The degree of parallelism is characterized by the
number of equivalence classes and can investigated by a
simple inspection of matrix B. Look at the paper [1] for
details.

Time complexity
Most steps of the proposed approach can be

accomplished in polynomial time.

1) The task of calculating dependence distance vectors
requires solving a system of linear equations and it can
be done in polynomial time by the Gaussian
elimination. According to [13], this computation can be
done in O(ldm) arithmetic operations.

4) A set R(B) of representatives for equivalence classes is
defined as a set of all integral vectors in the
parallelepiped defined by the columns of B. According
to [9] such a set of representatives can be found by
enumerating the equivalence classes with nonnegative
integral vectors in the lexicographical order (y <ix z if
there is some i, 1<i</, such that y;<z and for
Jj=1,..,1-1 and y=z). Enumerating |/ diagonal
coefficients of B requires O(l) operations and
enumerating n-/ rows of D" requires Onx(n-1))
operations.

Experiments

We have put the presented dependence analysis
module into the C++ implementation of the approach to the
extraction of equivalence classes. Additionally, we have
used the well-known tool CLooG v0.14.1 [14] for code
generation to achieve output source codes. The C++ codes
have been compiled using the gcc v4.5.0 compiler.

In order to evaluate the performance of the presented
approach, we have examined all the perfectly-nested
quasi-uniform loops (contained parameterized dependence
distance vectors) provided by the well-known NAS Parallel
Benchmark (NPB) Suite. In NPB, we have found 185
perfectly nested loops distributed in terms of dependence
types as shown in Table 1.

Table 1. The quantitative distribution of perfectly-nested loops in
terms of dependence types for the NAS Parallel Benchmark Suite

2) The task of identifying a set of linearly independent rows The results of dependence analysis Number
of a matrix D, D e Z™", with constant coordinates and 17 No dependences of '0?23
dependent ones can be done in polynomial time by the . . .

Gaussian elimination. This computation can be done in 2)  Uniform depende.nces’ including: 14

. . . . . e non loop-carried dependences 9
O(Idm) arithmetic operations, as it was previously « loop-carried dependences 5
mentioned. 3) Affine dependence distance vectors 1

3) The task of transforming a matrix D', D’ e 7M™ to its 4) Parameterized dependence distance vector 47
Hermite Normal Form matrix B, Be Z* can be The total number of perfectly nested loops 185

accomplished, depending on the algorithm used, even
in O(l g_lmlog(Zm/l)B(l 10g(l||D'||))) operations [13],
where 6 < 2.376.

Table 2. Effectiveness and time analyses of the proposed approach for quasi-uniform loops from the NAS Parallel Benchmark Suite
Number of . .
# Source loop Daerglrlz(leisﬂ parameterized D(-;;?;sze:rce Petit Time taken by the main steps of the approach [us]
P vectors y -2- [-3-]-4-] -5- | -6-]-7-
1) | BT error.f2p 5.t 1 29 308 N/A 3364 2 277 53 - -
2)|BT rhs.f2p_1.t 1 39 849 N/A 3919 2 292 67 - -
3)|BT _rhs.f2p 5.t 1 111 3608 N/A 6476 5 879 223 - -
4)|CG _cg.f2p 4.t 1 8 245 N/A 433 1 51 11 - -
5)| FT _auxfnct.f2p_1.t 1 1 126 1040 56 1 6 5 - -
6)|LU_HP jacld.f2p 1.t 1 1761 95279 N/A 82021 27 12532 2325 - -
7)|LU_HP_jacu.f2p_1.t 1 1761 92593 N/A 79148 27 |[11141| 2374 - -
8)| LU_HP I2norm.f2p 2.t 1 9 248 N/A 999 1 49 13 - -
9)| LU_HP pintgr.f2p _11.t 1 6 426 N/A 693 1 31 9 - -
10) | LU_HP pintgr.f2p 2.t 1 88 486 N/A 4890 5 879 153 - -
11) | LU_HP_pintgr.f2p 3.t 1 6 426 N/A 623 2 41 11 - -
12) | LU_HP_pintgr.f2p 7.t 1 6 385 N/A 591 1 39 8 - -
13) [ LU_jacld.f2p_1.t 1 2080 92323 N/A 87734 25 [21340| 3729 - -
14) | LU_jacu.f2p 1.t 1 2080 92689 N/A 89439 29 [19880| 3920 - -
15) | LU_I2norm.f2p 2.t 5 9 271 N/A 896 6 54 17 1 192
16) | LU_pintgr.f2p_11.t 1 6 285 N/A 702 1 30 11 - -
17) | LU_pintgr.f2p 2.t 1 88 486 N/A 5937 5 930 186 - -
18) | LU_pintgr.f2p_3.t 1 6 285 N/A 673 1 39 11 - -
19) | LU_pintgr.f2p_7.t 1 6 285 N/A 629 1 40 11 - -
20) | SP_error.f2p 5.t 1 29 308 N/A 3092 2 298 61 - -
21) | SP_ninvr.f2p_1.t 1 87 1563 N/A 6088 5 721 161 - -
22) | SP_pinvr.f2p 1.t 1 87 1643 N/A 6551 4 798 156 - -
23)|SP_rhs.f2p_1.t 1 54 1072 N/A 4608 4 492 111 - -
24) | SP_rhs.f2p_5.t 1 111 3608 N/A 5760 2 1013 236 - -
25) | SP_txinvr.f2p 1.t 1 234 2671 N/A 8573 6 1997 411 - -
26) | SP_tzetar.f2p 1.t 1 249 2749 N/A 7980 9 2394 469 - -
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27) | UA_adapt.f2p_2.t N1xN3xN4 24 2691 22981 2416 2 267 51 1 221
28) | UA_diffuse.f2p_1.t 1 12 447 N/A 1167 2 69 21 - -
29) | UA_diffuse.f2p_2.t 1 3 215 17037 148 1 18 6 - -
30) | UA_diffuse.f2p_3.t N1xN3xN4 3 257 10960 346 1 23 6 2 204
31)| UA_diffuse.f2p_4.t N1xN3xN4 3 251 3769 312 2 21 5 1 225
32) | UA_diffuse.f2p_5.t N2xN3xN4 3 262 3523 348 1 21 5 1 238
33) | UA_precond.f2p_3.t N1 3 258 2448 237 1 15 6 1 202
34) | UA_precond.f2p_5.t 1 32 189 N/A 3795 2 369 68 - -
35) | UA_setup.f2p_16.t N1xN2 3 229 1218 321 1 20 6 1 221
36) | UA_transfer.f2p_1.t 1 3 176 1837 197 1 15 6 - -
37)| UA_transfer.f2p 2.t 1 3 161 1274 170 1 13 6 - -
38) | UA_transfer.f2p_3.t 1 3 169 1281 168 1 13 6 - -
39) | UA_transfer.f2p 5.t 1 3 160 1248 170 1 14 5 - -
40) | UA_transfer.f2p_6.t 1 3 168 1275 167 1 13 6 - -
41) | UA_transfer.f2p_7.t N1 3 192 2413 269 1 16 7 1 202
42) | UA_transfer.f2p_8.t 1 3 161 1249 169 1 16 8 - -
43) | UA_transfer.f2p_9.t N1 3 195 9182 270 1 18 5 1 199
44) | UA_transfer.f2p_10.t 1 3 160 1259 173 1 14 6 - -
45) | UA_transfer.f2p_13.t N1 3 195 2468 262 1 15 5 1 203
46) | UA_transfer.f2p_15.t N1 3 233 2763 257 1 15 6 1 202
47) | UA_transfer.f2p_18.t N1 3 236 2768 256 1 15 6 1 196

Quasi-uniform loops (contained parameterized distance
vectors) have been parallelized using the Intel PentiumM
1.5GHz machine with the Linux openSUSE v11.1 32-bit
operating system. The results of the experiments are
collected in Table2, where time is presented in
microseconds and N/A stands for not-available.

Using the presented dependence analysis, we have
managed to find dependence vectors for all parameterized
perfectly-nested loops and decrease the time of a parallel
compilation. Under our experiments, we have found that a
dependence analysis as well as the replacement of
parameterized dependence distance vectors by a linear
combination of constant vectors have taken most of the
time. The other steps of the algorithm have performed
several times faster. The whole time required for a
dependence analysis and extracting equivalence classes is
counted up in milliseconds, what is similar to the previously
obtained results.

Conclusions

In this paper, we have expanded the approach
presented in [1] by introducing a dependence analysis
characterized by a polynomial time complexity. It has
permitted to examine the performance of the approach for
all parameterized perfectly-nested loops from the NAS
Parallel Benchmark Suite. The experiments confirm that the
presented approach is very fast and the use of efficient
dependence analysis methods can improve its
effectiveness and the performance of parallel compilation.

The comparison of the performance of the presented
approach with other well-known techniques is under our
current research. In our next work, we plan to extend the
approach to imperfectly nested loops and investigate its
effectiveness and time complexity.

Wydanie publikacji zrealizowano przy udziale Srodkéw

finansowych otrzymanych z budzetu Wojewddztwa
Zachodniopomorskiego.
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