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Analysis of the electromagnetic field generated by electric
charges moving with variable acceleration and general Lorentz
transformations

Abstract: The problem of determining electromagnetic fields generated by electric charges travelling with a variable acceleration are considered in
the paper. By applying Liénarda-Wiechert’s formulas the resulting fields have been explicitly defined by a charge in a linear motion exerted by a
constant force, i.e. within the relativistic approach, and a distant field generated by a charge in a harmonic motion. On such basis the space-time
coordinates relationships between inertial and non-inertial reference frames have been derived, which provide a certain generalization to Lorentz
transformations.

Streszczenie: W pracy zaprezentowane jest zagadnienie obliczania rozktadéw pdl elektromagnetycznych generowanych przez tadunki poruszajgce
sie ze zmiennym przy$pieszeniem w oparciu o wzory Liénarda-Wiecherta. Na tej podstawie wyprowadzono relatywistyczne transformacje pomiedzy
wspofrzednymi czasoprzestrzennymi przy przechodzeniu od ukfadu inercjalnego do nieinercjalnego na przypadki ruchu z przys$pieszeniem pod
wptywem stafej sity oraz ruchu drgajgcego. (Analiza pola elektromagnetycznego w otoczeniu fadunkéw poruszajacych sie ze zmiennym
przys$pieszeniem).
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Introduction where: R=r-ry(z), r=t-R/c, V(7) — velocity of the

An intense search aimed at providing a mathematical
formulation for the electrodynamics laws in non-inertial
reference frames has driven us to complete this paper.
A concept which served it is basically finding a distribution
for the electromagnetic field generated by sources in
accelerated motion. Liénard—Wiechert retarded potentials
[1, 2] seem perfect to perform this task. If field functions can
be put in an explicit form, which is correct only for particular
cases of moving sources, then transformation relationships
can be found, for both space-time coordinates and field
components in both types of the considered reference
frames, i.e. inertial and non-inertial ones, which provides
general Lorentz transformations. The relations obtained that
way shall allow certain differential operators to be used to
derive electrodynamics equations in the considered non-
inertial reference frame.
The paper deals with fields generated by a point electric  Fig.1. A graphic illustration to Liénard—Wiechert forms
charge in a linear motion

a) exerted by a constant force as in the relativistic =~ Knowing that

approach,

b) in a harmonic motion.
For a) case both electromagnetic field and transformations
of space-time coordinates, including the classical limit have
been fully provided, whereas for b) case electromagnetic  the electromagnetic field vectors can be determined as:
field for the distant zone has been found.

charge, ¢ — the speed of light.

E :—%—gradv, B=rotA

R 1 R
General description of the field generated by a point ) E(r.t)= Q 3{72[R—Vj+2{Rx((R—V)xaﬂ}
charge in a linear accelerated motion ffgfoR* cJ ¢ ¢
An electromagnetic field at position r and at time t B(r’t):EEXE

generated by a point electrical charge Q travelling along
arbitrary trajectory (Fig. 1) can be determined with \nere: R« =R-R-v/c, 7= 1_ﬁ2 , B=V/c
Liénard-Wiechert forms for retarded potentials V, A [1, 2],

namely The case under our consideration is a charged particle
in a linear motion, here along the OX axis (Fig. 2), thus
V(r.t) = 1 Q position, velocity and acceleration vectors take their
( > ) R . .
4re R_ -V(7) respective forms of:
c
™ Ho Qo) (3) 1= [xo(0,00], v=[(r)0.0] a=[a(r)0,]
Alr =20
4r 5 _ V(7)
c
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Fig.2. The setup for the considered case

Moreover,

(4) Rz\/(x—xo(r))2+y2+z2

and hence

6)  x-xp(@)f+y + 2% =clt-7)

Taking (2) and (3) transformed into a radial cylindrical
coordinate p=.,/y*>+z> (see Fig. 2) we obtain

Q |:2( RV) a 2:|
Ex(r,t)=—— 77| X=Xy —— |-—p
X( ) 47rgOR3 c c?

Qp 2, @
(6) Ep(r,r)=m{y +—2(X—XO)}

2
By(r,7)= -2 L L2 R
47\ &9 R: c

To have these components expressed as a function of
“observation” time t a relation between z time and t needs
to be found from equation (5). In general the equation is
solved numerically, and in its explicit form only for specific
relations Xo(7). Two of such cases are to be developed
further in the paper.

Description of the field generated by a charge in a
linear accelerated motion exerted by a constant force
Shall the point charge be assumed to be moving under

constant force F =ay,m, with an initial velocity v(0)=0, then
by solving the relativistic motion equations we obtain

2

™ (0 =~(p(e) -1}, v(r) = 807 a(r) =2
0

p(r) (o)

where:  p(z) =1+ (agz/c)

For such a case the solution to equation (5) takes the form

o ct(a—2¢22)+ DA

(8)
20?0
where:
2 2 c? ct 2.2
A=p"+D"+G, D=x+—, G=—2+c te,
a aO

A=A -4D2G +c2t2p?)

Formula (8) provides the relationship between zand X, p
as well as t. By substituting (8) into (7) and further to (6) an
explicit form of the field distribution is obtained, though the
form derived is quite complex. Exemplary distributions
obtained this way are presented in Figures 3, 4, 5.
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Fig. 3 Components of electric field strength E,
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Fig. 4 Component of electric field strength E,
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Fig. 5 Component of magnetic field strength Hy,

Description of the field generated by a charge in an
oscillating motion
For such a case the movement of the charge is expressed
as:

Xo(7) = Rysinwr, V(r)=wRjcoswr
(8)

a(r) = —0® Ry sinwr

Equation (5) takes the following form

9) \/(X — Ry sin a)r))2 + p2 =clt-7)
Though the exact solution can be obtained only numerically,
still within the distant zone (R>>R)

R=r=4x*+y?+2z% and thus
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r
r=t——
c

(10)

The field components are expressed by

Q [l B Rga)2 cos? a)r}

4 Rf 2

Ex(r,r):
c

2
0] Ry~ .
0 cos a)rj +7p 2 sin ot

. R
-| Xo = Rg sinwzr -
c

(11)

Ep(r,r):

Qp - ngz cos? ot +
4reg RS ¢?
Xg — Ry sinor

C2

Qp Ry 1 ngz cos? o7
47c2RR; c?

Roa)2 sin w7

By(r.7)=

jr coswt +

2 : 2
+(X=Rg sinwr .
J’(o)wsmm}
c

Transformation of the space-time coordinates

Taking the solution presented in p.3 transformation
relationships between O X Y Z inertial reference frame,
which is the one where we define the charge movement,
and O’X’Y’Z’, a non-inertial one set at the charge travelling
due to constant force (Fig. 6).

E

\B

0 o'

Fig. 6 Reference frames under consideration

For p =0 the E, component from eq. (6) takes the form of

Q 7 (x=x)1-5) _
470 [(x—xo N1- )P
4zeg [(x—xp)a(r)f

thus it is a Coulomb field. If observed that similarly to
transformation between two inertial reference frames, the
field component parallel to the velocity is not transformed, it
shall be taken

E(r,7)=

(12)

1-
1+

h

(13)

X =[x=x()|a(). 9(r)=

=

Moreover, with an axiomatic assumption that O point
moves with reference to O’ with —v velocity, an inverse
relationship can be derived

) x=beonElon@). o) = 12
as well as: r=t—LO(T), T':t'__XUrXO(T')
C c

Theoretically equations (13) and (14) can be solved for t
and t’ which provides the following pairs of operations for
space-time coordinates

X = f(xt) x=f'(x,t')
t'=g(xt) t=g'(x,t)

The explicit forms for the operations are presented for two
cases, namely for a = @, = const (classical boundary case
i.e. for v << ¢), and for a determined in eq. (7). Complex
operations result in

(15)

1
for X, = anrz

X'= (x —%aorzjg(r), X= [x’+%aor'2)g*(r')
18 t=2g@+(-Va)o®
0
tzég*(r‘)—é(l—\/A_*L/g*(r')

where: z'— c (1—&) A—1+Zi(x ct)

2
aor/c
1+ay7

Since A >0, hence:

= (X—ct')

1 1-ayr'/c
I1+ay7'/c

c X
17 t<—+—
(an <2a+c
while for (7):
X' = (x=xo(7))g(2), x=(x+x,(z'))g=(z")
1 02 c cC
(18)  t=—|x+—(ps+—1)|gs +S+——=p«
c a a a
2
=L x “Ep-1)g+T-5+5p
c a
where
2
S=T=C—\/(p*—l)zgf+2(p*—l)g*
2
T=f'=cg\/(p—1)2gz+2(p—1)g
2 2
[ct—D+CJ[ct—D—C]
a a
- 2¢(ct-D)
ct'—Ds« —— || ct'—Ds + —
. a
i 2¢(ct'-Ds)
2
D:x+c—, Di = X'
a a
Comments

For the presented approach to prove proper and correct two
postulates need to be met, namely
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a) the electric field component parallel to the velocity
vector in the reference frame of the travelling charge is of a
Coulomb like field, and

b)  v(7)=-v7),

Considering common Lorentz transformation the postulates
set above seem natural, nevertheless it might be worthwhile
to present another three arguments proving the derived
formulas to be correct.

a) for v = const leads to the classic Lorentz
transformation for inertial reference frames,

b) for v << ¢ in case with c—>o it yields Galileo
transformations

=t r'=t'=t
(19) X' =x-xt)
X = x'+x0?t)
Moreover,
E'=E B'=E+vxB

c) widely accepted in the literature “the clock postulate”
(see p. [3] or else) is also satisfied here, e.i. the derived
transformation forms provide for space-time coordinates to
depend on the velocity of the systems, but not on the
acceleration.

Conclusions

Lienard-Wiechert retarded potentials can be applied to
obtain an explicit description of the electromagnetic field
originating from a point electrical charge moving with a
variable acceleration exerted by a constant force.

For the charge in a harmonic motion, the explicit form
for the electromagnetic field description in the distant zone
can be derived.

Resulting field distributions allow to provide general
Lorentz transformations for the space-time coordinates in
the inertial and non-inertial reference frames.
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