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Streszczenie. Rozpatruje się możliwość zastosowania przybliżonego modelu obliczeniowego do analizy pola magnetycznego przewodów z prądem 
umieszczonych wewnątrz cienkościennej przewodzącej osłony. W tym celu wykorzystuje się metodę elementów brzegowych (MEB), lecz ze 
względu na założenie o małej grubości osłony pole wewnątrz niej wyraża się teoretyczną zależnością przybliżoną. Pozwala to zmniejszyć nakład 
obliczeń, a także uniknąć ewaluacji całek prawie osobliwych. 
  
Abstract. This paper focuses on a possibility of using an approximate computational model in the analysis of the magnetic field around a current 
lines enclosed in a thin conductive shield. The model uses the boundary element method (BEM), but the field in the shield is expressed with an 
approximate expression due to small thickness of the shield. This reduces the computational effort and avoids evaluating the nearly-singular 
integrals. (Przybliżona analiza harmonicznego pola magnetycznego przewodów z prądem w cienkościennej osłonie za pomocą MEB). 
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Introduction 

Analysis of magnetic field in current lines is a subject o 
many papers, i.e. [1-3] to name a few. Realistic 
configurations, like current lines enclosed in conductive 
shields, often require a use of numerical methods. If the 
shields are relatively thin, they can be troublesome in 
numerical analysis. In FEM, for example, they require a 
very fine mesh, in BEM – result in nearly singular integrals, 
the numerical evaluation of which can be very inaccurate. 
Therefore, thin shields require special treatment [4-9]. This 
paper show one of possible approaches.  

 
Problem description and governing equations 

A set of long, parallel wires with time-harmonic currents 
I1, I2, …, IK of angular frequency ω is enclosed in a thin 
conductive shield Ωs, the thickness of which, d, is small in 
relation to the cross-section dimensions (Fig. 1). The 
internal and external regions of the shield are Ωi and Ωe, 
respectively. All regions are assumed to be non-magnetic 
(μr = 1). The goal is to find out the magnetic field in the 
configuration. 

 
 
 
 
 
 
 
 
 

 
Fig. 1. Current lines enclosed in a thin shield 

 
With z-axis along the wires, the magnetic field in the 

configuration can be expressed in terms of the z-component 
of the magnetic vector potential. In the particular 
expressions it fulfills the following equations 
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where κk
2 = jωμ0γk. The continuity of the tangent components 

of magnetic field intensity results in the continuity of normal 
derivatives of A on each boundary. Since different potential 
gauge is used in each region (to make the Helmholtz 
equations homogeneous), the potential can be 
discontinuous on the boundaries so that 
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where Ck and Cs are K + 1 constants corresponding to each 
conductive region. To determine them, K + 1 additional 
equations must be formulated. They are Ampère’s laws for 
external contours Γs, Γ1, Γ2, …, ΓK of the cross sections of 
each conductive region: 
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where Θk is the total current through contour Γk (i.e. Θs = ΣIk, 
Θ1 = I1, Θ2 = I2, …, ΘK = IK). 

 
Conventional BEM model 

The above mentioned equations can be solved by 
means of BEM [10-11]. Each of Eqs. (1), through its 
boundary integral equivalent, results in a set o algebraic 
equations, which can be written as matrix equation. They 
are as follows: 
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for each of K wires, 
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for the shield, and  

(6)  










 


e
e

e
e

e
e

e
e

1

iii
i

i
i

1

iii
i

i
i ,

QGAH

QGQGAHAH
K

k
kk

K

k
kk

 

for the internal and external non-conductive regions. In 

equations (4)÷(6), b
aA  and b

aQ  are column vectors of A 

and ∂A/∂n on boundary Sa for region Ωb, whereas b
aG  and 

b
aH  are the standard BEM matrices formed from the 

integrals of the fundamental solution for region Ωb and 
boundary elements on boundary Sa.  
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The interface conditions on each of the boundaries take 
the following form: 
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where k = 1, 2, …, K, and 1 is a column vector of ones of 
appropriate dimension. The negative signs in the last three 
relationships come from the assumed orientation of the 
normal vectors (outwards region Ωb). Relationships (7) allow 
eliminating some of vectors from equations (6) so that 
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The discrete form of equations (3) are 
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where Lk is a row vector of lengths of elements belonging to 
boundary Sk.  

Equations (4), (5), (8) and (9) can be formed into one 

system of equations, and solved with respect to b
aA , b

aQ  

and Ck. The computational model, referred to as CBEM 
(conventional BEM) in the subsequent text, is correct for 
any shapes of wires and shield cross-sections. However, if 

the shield is thin, some integrals in matrices s
iG , s

eG , s
iH  

and s
eH  are nearly singular, and therefore, require much 

computational effort to be evaluated with suitable accuracy.  
 

BEM model for thin shield 
Because the shield is assumed to be thin, there is hope 

that it can be treated in a special way. If the shield is thin 
enough, the shell between two corresponding boundary 
elements lying on Si and Se may be approximately regarded 
as a fragment of infinite plate. In such a plate, the general 
solution of the first of Eqs. (1) for the shell becomes 

(10) ζκCζκCζA s2s1
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where C1 and C2 are constants, and 0 ≤ ζ ≤ d. Assuming that 
A(0) = Ai and A(d) = Ae, the constants can be evaluated so 
that 
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This leads to the following relationships: 
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where 

(14) dκκτdκκσ ssss csch,coth  . 

Equations (13) written in discrete form, 

(15) s
i

s
e

s
e

s
e

s
i

s
i , AAQAAQ τστσ  , 

deliver approximate relationships between nodal values of 
A(s) and ∂A(s)/∂n on boundaries Si and Se so that there is no 
need to use equation (5) anymore. The resulting model is 
referred to as ABEM (approximate BEM) in the subsequent 
paragraphs. When compared to CBEM, its system of 

equations does not contain s
iQ  and s

eQ , therefore, it has a 

smaller main matrix. There are no nearly singular integrals 
(for sufficiently regular boundary of the shield). Since the 
model uses approximate relationships, it should be uses 
with care. Numerical simulations show that it works the 
better the greater |κs| and the smaller d. 

 
Numerical example 

Both presented models, were implemented in 
Mathematica 7.0 and tested in various configurations and 
parameters. Boundary elements with constant field 
approximation and quadratic geometry approximation were 
used. Such elements are rather unusual, but they allow 
taking into account possible curvature of the boundary and 
retaining the simplicity of matrix generation. 

As an example let us consider a shielded symmetrical 
three-phase line of arbitrary dimensions and cross-section 
shown in Figure 2. Each wire has circular cross-section of 
radius Rw, and the shield is a tube of internal and external 
radii Ri and Re, respectively. Let us introduce the following 

auxiliary quantities: dww = w1 23 RR   (distance between 

the closest points of wires), dws = Ri − (R1 + Rw) (distance 
between the closest points of a wire and the shield), Δw − 
skin depth for the wire, Δs – skin depth for the shield, δ = (Re 
− Ri)/Ri (the relative thickness of the shield). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Symmetrical shielded three-phase line 
 
The results given in the subsequent paragraphs were 

obtained for the following discretization: each wire − 20 
elements, both the internal and external boundary of the 
shield − 40 elements (the total number of boundary 
elements was 140). The computations were performed for 
different values of skin depth (Δw and Δs, which were 
assumed equal) and the relative shield thickness δ. Each 
computation was performed using three different 
computational models. The first one, referred to as CBEM1, 
is CBEM with the internal built-in Mathematica procedures 
to evaluate the nearly singular integrals. The same problem 
was solved with use of ABEM, but since the nearly singular 
integrals are absent then, the BEM integrals were evaluated 
with much quicker Gaussian quadrature of order 10. The 
same settings were used then in model CBEM, referred to 
as CBEM2. 

 

2Rw 

R1 

Ri 

Re 

L1 

L2 L3 

 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 88 NR 12b/2012                                                                                      63 

The results obtained from CBEM1 were treated as the 
most exact of the three. In general, the CBEM1 was the 
most time consuming − it was nearly twice slower than 
CBEM2 and about 3÷4 slower than ABEM, which was the 
quickest. Figure 3 shows nodal values of nA (its real part), 
which is the negative tangent component of magnetic flux 
density, for δ = 0.1, and Figure 4 – for δ = 0.01 for arbitrary 
values of parameters. Numerical tests indicate that if the 
shield is thick enough the results given by CBEM1 and 
CBEM2 are practically the same, and ABEM gives some 
small differences (Fig. 3). For smaller values of thickness 
the differences between the three models becomes smaller, 
and practically indistinguishable. For very small thickness 
ABEM produces practically the same results as CBEM1, 
whereas CBEM2 leads to significant errors (Fig. 4). 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Nodal values of RenA on external (S1

1) and internal (S2
1) 

boundary of the shell for δ = 0.1 and Δs/Rw = 1 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Nodal values of RenA on external (S1

1) and internal (S2
1) 

boundary of the shell for δ = 0.01 and Δs/Rw = 0.5 
 
Figures 5 and 6 shows active and reactive power 

penetrating the shield (δ = 0.1 and 0.01, respectively) per 
unit length and divided by I2RDC, where I is the line current 
and RDC – the DC resistance of the shield per unit length. 
For thick shield CBEM1 and CBEM2 give the same results, 
and ABEM produces values close to them (Fig. 5). For thin 
shield CBEM2 becomes very inaccurate (Fig. 6). 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Active and reactive power penetrating the shield versus 
Rw/Δw (Δw = Δs) for δ = 0.1  

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Active and reactive power penetrating the shield versus 
Rw/Δw (Δw = Δs) for δ = 0.01  

 
Concluding remarks 

The presented computational model ABEM is a BEM-
based model which uses an approximate expression to 
estimate the field inside thin shell instead of the standard 
BEM equation. In comparison to the conventional BEM, 
such an approach eliminates the presence of nearly 
singular integrals in the main matrix and leads to system of 
equations with smaller main matrix. This results in much 
shorter time of computation and memory demand while 
keeping the errors on acceptable levels.  

Of course, it should be kept in mind that this 
approximation has its limitations. Numerical tests showed 
that ABEM works well for thin shells, and confirmed its 
usability in the considered types of problems. This is also 
confirmed by certain theoretical considerations not included 
in this paper due to brevity. 
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