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Abstract. The principles and results of capacitance calculations in the system of N conductors located in the a dielectric environment have been 
presented in the paper. The partial capacitances - self- and mutual - for such a system, considering the restricted and unrestricted areas have been 
determined. The subject of analysis was a system of N parallel, infinitely long conductive paths placed on a substrate of hybrid microcircuit. For the 
determination of partial capacitance the Fourier integral transformation method (presented in previous publications) has been applied. 
 
Streszczenie. W artykule zaprezentowano zasady i rezultaty obliczania pojemności w systemie N przewodników umieszczonych w środowisku 
dielektrycznym. Określono pojemności cząstkowe własne i wzajemne dla takiego systemu, rozpatrując obszary ograniczone i nieograniczone. 
Przedmiotem analizy był układ równoległych, nieskończenie długich ścieżek przewodzących umieszczonych na podłożu mikroukładu hybrydowego. 
Do wyznaczenia pojemności cząstkowych zastosowano (prezentowaną we wcześniejszych publikacjach) metodę przekształceń całkowych Fouriera. 
(Zastosowanie równań całkowych do obliczania pojemności w systemie ścieżek przewodzących mikroukładu hybrydowego).  
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Introduction 
 Microelectronic hybrid circuit is a structure in which 
particular elements, active and passive, are electrically 
connected by means of conductive paths located, most 
often, on a dielectric substrate. Specificity of such circuit, 
conditioned by the manufacturing technology, miniaturization 
level, planarity of structure and related with it topography of 
conductive paths, can be cause  of mutual couplings 
between the elements among which capacitive couplings are 
of great significance. This paper is a continuation of a set of 
publications concerning calculation of capacitance in 
microcircuits with various configuration of conductive paths 
[1] and the subject of discussions is a circuit consisting of N 
number of such layers. They are able to accumulate a 
charge and, directly, to accumulate energy. A unit of 
measure for such ability is the capacitance value of the path 
system. When looking for interrelations between the charges 
and potentials of particular path one should consider the fact 
that the charges depend both on the potential of a given 
conductor, as well as distribution and potential of all other. 
For that reason so-called self partial capacitance or mutual 
capacitance values between each conductive layer and all 
other ones are considered in the circuit. To determine 
capacitance it is enough to determine the potential 
distribution satisfying the Laplace's equation.  
 
Capacitance determining in the circuit of conductors 

If φ1, φ2,…, φN, potentials are applied to each of N 
conductors located in the dielectric environment of ε 
permeability than Q1, Q2…, QN electrical charges will be 
induced on S1, S2…, SN surfaces of this conductors and they 
will create an electric field of E intensity. The vector can be 
expressed by φ, potential. The φ function is harmonic and on 
each Sk surface of k conductor (k=1,…, N) has φk value. This 
- among many possible ways - can be presented in the 
following form: 
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where each of the ξi functions is harmonic and on the i 
conductor it equals 1 while on other ones it equals zero. On 
each k of Sk surface the electric charge Qk can be defined by 
the following relation: 
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where nk is a unit vector perpendicular to Sk surface. 
Substituting (1) to (2) it can be obtained: 
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Cki factors defined by the dependency (4) are called 
capacitance factors if k = i and induction factors if k ≠ i [2]. In 
other literature sources [3,4,5] self partial capacitance terms 
are used (for k = i) and mutual ones (for k ≠ i). Mutual partial 
capacitance values are characterised by a significant 
property, i.e.: 

(5) Cki = Cik 

The ξk functions do not depend on φk potentials values, but 
only on the circuit's geometry. In this meaning they are of 
universal nature; they make it possible to solve the Laplace's 
equation at any φk values. However, one needs to bear in 
mind the fact that the aforementioned functions have 
different properties in limited systems and different in 
unlimited ones. The first of them refers to the internal 
Drichlet's condition for solution of the Laplace's equation and 
the other one - to the external condition (Fig. 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1.System of  N conductors, region Ω: a) limited, b) unlimited 
 

If, in a limited systems (Fig. 1.1a) one assumes that the 
values of potentials are identical: φ1=φ2=…=φN=φ0 the function 
φ(x,y,z) defined in the equation (1) is constant in the entire 

a)                                        b) 
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region Ω. Thus, on the basis of dependency (1) and (4) it can 
be described: 
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where k assumes values from 1 to N. 
In order to determine the capacitance values the following 
system of equations is formed:  
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where [C] matrix is called the generalized capacitance matrix 
[4]. For a limited systems of conductors, taking into account 
the dependency (7), partial capacitance values can be 
presented in the following way: 
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a and after consecutive transformations it can be obtained: 
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and, since each of the partial capacitance sums present at 
the right side of the equation (9) is - when taking into account 
(5) and (6) - equals zero, thus, for conductors in a limited 
area: 

(10) Q1 + Q2 + …+ QN = 0 

This property is characteristic only for limited systems; it is 
not present in unlimited areas, because in that case a 
different solution of the Laplace's equation exists and it is not 
constant, even if its border values are constant.  

Especially interesting case is the one for N = 2. This is 
what results, adequately, from the system of equations (7) 
and dependency (4): 
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As a result the Q1 = (φ1–φ2)C11 or Q2 = (φ2–φ1)C22  are 
determined, and thus a classic definition of capacitance: (13)
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In the case of unlimited systems and number of conduits 
N = 2 the dependency (13) is not always met. This results 
from the fact that the condition Q1 = -Q2 can be met not at 
any φ1 and φ2 values. To determine capacitance in such 
circuit, taking advantage of equation (13), it is assumed that 

Q1 = -Q2. Than the dependency between φ1 and φ2 potentials 
is: 
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After substituting the dependency (14) to the system of 
equations (11) and simple transformations, it can be 
expressed: 
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thus, taking advantage of (13) and assuming that  
C11C22 - C12C21 ≠ 0 C capacitance is calculated: 
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Planar structures being the subject of considerations 
consist of a systems of paths configurations where parasitic 
capacitances are observed. In real electronic circuits the 
potential of particular pathways is determined with relation to 
so-called reference conductor (also called a zero, mass or 
reference conductor). Bearing in mind this fact and assuming 
that these types of structures belong to unlimited systems 
(Fig. 1.1b) one can determine their partial capacitance 
values taking into account the reference conductor [4,5] 
Selecting N path as the reference conductor the Ui voltage is 
defined as the potential difference between the i path and 
the reference conductor N: 

(17)  Ui = φi – φN,       i = 1, 2,…, N-1  

and a new capacitance matrix [C*] is formed. Its dimensions 
(N-1 x N-1) take into account the reference conductor. 
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 In order to calculate partial capacitance values C*
i j  

(i, j = 1…N-1), the potential φi = Ui + φN determined from 
relation (17) should be substituted to equations (7), as a 
result of what is obtained: 
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Assuming that condition (10) is met in the unlimited 
system, after dispensing φN potential in the equations (19) 
and simple arithmetic operations the following formula is 
obtained, which enables to determine the partial capacitance 
values in the [C*] matrix: 
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It is worth noticing that the first summing up in the 
numerator of equation (20) is the sum of all i elements of the 
line, while the second one - the sum of all elements of j 
column of C matrix and, in the denominator, there is the sum 
of all elements of the matrix [5]. 

Assuming N = 2 number of conductors in an unlimited 
system and selecting one of them as the reference conductor 
and then, using the procedure described above, a 
dependency to C* capacitance identical with the formula (16) 
is obtained. 
 
Mathematical model 

The subject of the analysis is a circuit consisting of N 
number of parallel, infinitely long conductive layers (paths) 
located at one side of the microcircuit substrate of h 
thickness and infinite length and width (Fig. 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Distribution of conductive paths on the one side of the 
microcircuit substrate: a) general view, b) cross section z-x 
 

Determining partial conductance values (calculated per 
unit of length) required, first of all, determination that would 
meet the Laplace's equation - distribution of potential. This 
two-dimensional boundary value problem was solved using 
the Fourier integral transform method (FIT). The following 
simplifying assumptions were implemented: 
- the conductive path thickness is negligible;  
- the width of each path is (bi-ai)=wi, i=1, . . . , N 
- the dielectric permittivity of the substrate is 1, the area 

above its surface - 3, and below substrate surface - 4; 
- the conductive layers were supplied potential i and 
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Potential (x,z) can be expressed as: 

(21) 




 


  dezFzx xj),(
2

1
),(  

where  

(22) dxezxzF xj




  ),(),(  

is the transformation of (x,z). The solution can be described 
as: 
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R1() – R4() coefficients are derived from classical 
electrostatic field conditions: 
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As a result a system of integral equations determining the 
value of potentials obtained: 
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where H=Hr+Ho is a kernel of integral and includes regular 
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 






d
vx

GH
dw

dw
r

)(cos(
)(

)1(

0

2 





 


 

 
))(th)1(

)(th
)(

h

h
G

wddw 



  

 
vx

H
dw

d
o 


1
ln




, 

a d=1/4, w=1/3. 
 
The equation system (28) was solved by a numerical 
calculation method, using the collocation method [6] and 
performing the discretisation of equations (Fig.3). It was also 
assumed, that equation system of distribution of electrical 
charge density q is fulfilled in points: 
xm(Mi)=ai+(m-0.5)di for m=1, . . . , Mi,  and qi(Mi) k(Mj)=const. for 
vk<v<vk+1, vk(Mj)=aj+(k-1)dj, dj=(bj–aj)/Mj, for k=1, . . , Mj;  
i and j=1, . . . , N denote the number of conductive paths. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Partition of layer widths; Mi - number of segments 
 
The equations system (28) and can be now expressed as: 
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are called the coefficients of potential. 
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This algebraic equation system (29), can be presented in 
matrix form: 

(31) []=[W]·[C] 

whence the matrix of partial capacitance is 

(32) [C]=[W-1] 

 
Numerical calculations and experimental verification 

Based on presented mathematical model suitable 
numerical procedures were created (basing on algorithms 
used in previous studies [1]), for realization of which a 
professional Mathcad 13 program was used. In these 
procedures one assumed division of the pathways' width to 
200 segments and, also, the upper limit for numerically 
calculated improper integrals Fij was determined to approx. 
5.103.  

On this basis a series of simulations were carried out, 
changing the number of conductive paths, geometrical 
parameters of the system, as well as the number of the 
reference path. Exemplary results are presented for a circuit 
of 3 paths of configuration as in figure 2b; the third path was 
assumed as the reference conductor. The calculations were 
preformed assuming the following circuit parameters: 
w1÷w3=0,6 mm, s1=s2=0,4 mm, 3=4=1, 1=10,2.Results of 
the calculations were partially verified experimentally, by 
comparison with measurement results in real circuits. For 
this purpose the suitable test circuits  were designed and 
performed. Those circuits (10 test samples) have been made 
on substrates of 100x65x0,635 mm using the alundum 
ceramics 96% Al2O3 with dielectric constant 1=10,2. To 
perform the measurements RLC bridge by Agilent 4282A 
was used. In order to eliminate the impact of systematic 
errors to the result of the calculations, the measurement 
system - when thermal conditions became stable - was 
subject to a process of automatic OSL (Open, Short, Load) 
correction. The values obtained when taking into account the 
reference conductor and results of the simulations presented 
in a form of [Cs*] matrix and measurements - [Cm*] (in pF/m), 
can be considered as acceptable. 
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The correctness of the elaborated calculation method can 
also be confirmed by the distribution of the charge density in 
the area of conductive paths. This density is practically 
constant on the most part of their areas and suddenly 
increases near the edges (Fig.5). 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.5. Results of numerical calculation of charge distribution 
 

Correctness of calculations for the program were 
additionally checked by comparing them with results 
obtained when using other calculation methods [4]. For 
circuit parameters of w1=w2=w3=0,381 mm, s1=s2=1,143 mm, 
h=1.1938 mm, ε1=4.7 (glass epoxy) was obtained: 
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- Galerkin method  C=
29.7632
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and this fully proves correctness of the method. 
 
Conclusion 

The procedures and program for calculating per-unit-
length capacitance values for a conducting path systems 
enable analysis of geometrical and physical factors which 
have an impact on the capacitance value. They also give a 
possibility - when using the same algorithms - for performing 
calculations for circuits of a different configuration (with a 
screen plane, multi-layer, etc.). Satisfactory conformity of the 
calculation results and measurements of capacitance values, 
as well as good convergence of numerical simulations of 
Fourier's integral transformation method, when compared to 
calculation results during which other methods were used 
(Galerkin's, point matching), confirms correctness of the 
elaborated procedures.  
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