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Streszczenie. Autorzy prezentują wyniki badań nad identyfikacją osób na podstawie danych chodu uzyskanych za pomocą techniki motion capture. 
Redukcję wymiarowości przeprowadzono stosując algorytm wieloliniowej analizy składowych głównych (MPCA), który operuje na tensorowej 
reprezentacji danych. Dla potrzeb identyfikacji osób zastosowano szereg metod klasyfikacji dostępnych w pakiecie WEKA uzyskując największą 
skuteczność dla perceptronu wielowarstwowego. (Technika motion capture jako źródło danych dla identyfikacji osób na podstawie chodu). 
  
Abstract. The authors present results of the research aiming at human identification based on tensor representation of the gait motion capture data. 
High-dimensional tensor samples were reduced by means of the multilinear principal component analysis (MPCA). For the purpose of classification 
the following methods from the WEKA software were used: k Nearest Neighbors (kNN), Naive Bayes, Multilayer Perceptron, and Radial Basis 
Function Network. The maximum value of the correct classification rate (CCR) was achieved for the classifier based on the multilayer perceptron. 
 
Słowa kluczowe: redukcja wymiarowości, algorytm MPCA, ekstrakcja cech, klasyfikacja danych chodu. 
Keywords: dimensionality reduction, MPCA algorithm, feature extraction, gait data classification. 
 
 
Introduction 

Gait is defined as coordinated, cyclic combination of 
movements which results in human locomotion [1]. A 
unique advantage of gait as a biometric is that it offers 
potential for recognition at a distance or at low resolution or 
when other biometrics might not be perceivable [2]. Gait 
can be captured by two-dimensional video cameras of 
surveillance systems or by much accurate motion capture 
(mocap) systems which acquire motion data as a time 
sequence of poses. Motion capture is defined as “The 
creation of a 3D representation of a live performance” [3]. 
The movement of an actor wearing a special suit with 
attached markers is recorded by NIR cameras. Positions of 
the markers in consecutive time instants constitute basis for 
reconstruction of their 3D coordinates. 

Direct application of the mocap system for human 
identification is problematic because of the inconvenience 
of the acquisition process. On the other hand, its great 
advantage is high precision of measurements. Thus, the 
usage of the mocap system in the development stage of the 
human identification system is reasonable [4]. 

Motion data lie in high-dimensional space [5], but the 
components of gait description, discussed in detail in next 
section, are correlated, what allows dimensionality 
reduction. 

The aforementioned problems formed the general 
objectives of the research: analysis of effectiveness of 
human identification based on gait mocap data with 
reduced dimensionality, and evaluation of the applied 
classification methods. 

A full overview of bibliography describing the methods 
for solving the discussed problem would be unusually 
spacious. Generally, gait identification approaches can be 
divided into two categories: model-free and model-based. 
The former category can be split into approaches based on 
a moving shape and those which use integrate shape and 
motion within the description [2]. In the first example of the 
model-free approach silhouettes of walking human beings 
were extracted from individual frames using background 
subtraction, their morphological skeletons were computed 
and the modified independent component analysis (MICA) 
was proposed to project the original gait features from a 
high-dimensional measurement space to a lower-
dimensional eigenspace. Subsequently, the L2 norm was 
used to measure the similarity between transformed gaits 
[6]. The principal components analysis (PCA) was also 
used in a similar way [7]. In [8] the recognition process was 

based on temporal correlation of silhouettes, whereas a 
spatio-temporal gait representation, called gait energy 
image (GEI), was proposed for individual recognition in [9]. 
The application of the Procrustes shape analysis method 
and the Procrustes distance measure in gait signature 
extraction and classification was shown in [10]. Numerous 
studies present frameworks developed for recognition of 
walking persons based on the dynamic time warping 
technique (DTW) [11], [12], as well as on the variants of the 
hidden Markov model (HMM), inter alia, generic HMM [13], 
population HMM [14], factorial and parallel HMMs [15]. 

The model-based approaches use information about the 
gait, determined either by known structure or by modeling 
[2]. The Acclaim format (ASF/AMC – Acclaim Skeleton 
File/Acclaim Motion Capture) is often applied as the 
skeleton model of the observed walking person. Numerous 
methods aim to estimate the model directly from two-
dimensional images, not requiring actors to wear special 
equipment for tracking. An example of this markerless 
approach to motion capture is described in [16] where the 
particle swarm optimization algorithm (PSO) is used to shift 
the particles toward more promising configurations of the 
human model. In [17] 2D motion sequences taken from 
different viewpoints are approximated by the Fourier 
expansion. Next, the PCA is used to construct the 3D linear 
model. Coefficients derived from projecting 2D Fourier 
representation onto the 3D model form a gait signature. 
Another set of features used for human identification is 
extracted from spatial trajectories of selected body points of 
a walking person (root of the skeleton, head, hands, and 
feet), named as gait paths [18]. 

It is stated in [19] that many classifiers perform poorly in 
high-dimensional spaces given a small number of training 
samples. Thus, feature extraction or dimensionality 
reduction is an attempt to transform a high-dimensional 
data into a low-dimensional equivalent representation while 
retaining most of the information regarding the underlying 
structure or the actual physical phenomenon [20]. The 
dimensionality reduction problem can be solved, inter alia, 
by encoding an image object as a general tensor of second 
or higher order [21]. The solution proposed in the 
aforementioned study includes the criterion for 
dimensionality reduction called discriminant tensor criterion 
(DTC) and the algorithm called discriminant analysis with 
tensor representation (DATER). 

Multilinear projection of tensor objects for the purpose of 
dimensionality reduction is the basis of the multilinear 
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principal component analysis (MPCA). A survey with in-
depth analysis and discussions is included in [22], whereas 
a framework for tensor object feature extraction is 
presented in [19]. One of the extensions of the MPCA – an 
unsupervised dimensionality reduction algorithm for 
tensorial data, named as uncorrelated MPCA (UMPCA) – is 
proposed in [23] and [24]. 
 
Tensor Representation of the Gait Mocap Data 

Tensor object is a multidimensional object, the elements 
of which are to be addressed by indices. The number of 
indices determines the order of the tensor object, whereas 
each index defines one of the tensor modes. Gait silhouette 
sequences are naturally represented as third-order tensors 
with column, row, and time modes [19]. 

Description of each of the consecutive poses forming a 
gait sequence depends on the assumed skeleton model. 
For a typical model containing 22 segments and a global 
skeleton rotation (Fig. 1), description of a single pose 
comprises values of 69 Euler angles. Three additional 
values are required for specification of a global translation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Components of the skeleton model 

 
The authors propose 2 variants of tensorial 

representation of gait mocap sequences – based on 
second-order and third-order tensors. 

The second-order representation of the gait mocap data 
is composed of “time mode” and “pose mode”. A single 
tensor object includes a single gait sequence built of 100 
consecutive frames (poses) according to the requirement of 
the MPCA which accepts tensor samples of the same 
dimensions. The global translation values were removed 
from the input data, which guarantees that the identification 
process is based solely on the body parts movement, not 
on the gait route. Additionally, values of the angles 
remaining constant for all consecutive poses were also 
eliminated as redundant. Consequently, description of a 
single pose includes values of 51 Euler angles. Hence, total 
number of features characterizing a single gait sequence 
comes to 5100. 

The third-order tensor representation is based on modes 
indexed, respectively, by numbers of components of Euler 
angles (“angle mode”), numbers of skeleton components 
(“pose mode”), and numbers of sequence frames (“time 
mode”). Gait sequences as distinct from the data 
represented as second-order tensors, were elongated to 
128 frames. In addition, all Euler angles were taken into 
account increasing the total number of features 
characterizing a single gait sequence to 8832. 
 

The Multilinear PCA Algorithm 
Multilinear projection of tensor objects for the purpose of 

dimensionality reduction was based on the algorithm 
presented in [19]. According to the authors of the MPCA 
algorithm: “Operating directly on the original tensorial data, 
the proposed MPCA is a multilinear algorithm performing 
dimensionality reduction in all tensor modes seeking those 
bases in each mode that allow projected tensors to capture 
most of the variation present in the original tensors” [19]. Its 
application leads to feature extraction by determining a 
multilinear projection – the mapping from a high-
dimensional tensor space to a low-dimensional tensor 
space. As a result of the multilinear projection of the N-order 
input tensor object N projection matrices are constructed. A 
single point of a tensor object represents a single feature. 
Thus, number of features Ι in the N-order input tensor object 
is defined as 
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whereas after dimensionality reduction it is described by the 
formula 
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where Pn ≤ In, n = 1..N  Nn ;1 . Symbols In, Pn denote the 
n-mode dimension of the tensor, respectively, before and 
after reduction. 

The PCA can be done by the eigenvalue decomposition. 
Assuming that in case of the N-order input tensor object 
eigenvalues for the particular modes are described as 
follows: 
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the ratio Q expresses the remained portion of the total 
scatter in the n-mode after the truncation of the n-mode 
eigenvectors beyond the Pnth [19]: 
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According to the MPCA algorithm computations for both 
considered variants of tensorial representation of gait 
mocap sequences were performed in 4 phases described 
below. 

Preprocessing – because all tensor samples are 
required to be of the same dimensions, an input set of  
tensor samples was normalized and, subsequently, 
centered by subtracting the mean value. 

Initialization – eigenvalues and eigenvectors were 
calculated for each mode separately. Subsequently, 
eigenvalues were arranged in descending order and 
cumulative sum of their relative contributions was computed 
and compared to the percentage Q of variation which 
should be kept in each mode. The first case, when the 
cumulative sum achieved or exceeded the user-specified 
value of Q, determined Pn eigenvectors which formed the 
projection matrix for the n-mode. 

Local optimization of the projection matrices – improved 
versions of all projection matrices were computed one by 
one with all the others fixed. 
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Projection of the centered input samples using the 
projection matrices – feature tensors constituting the low-
dimensional representation of the input samples with Q % 
variation captured were obtained. 
 
Experimental Research 

Gait sequences were recorded in the Human Motion 
Laboratory (HML) of the Polish-Japanese Institute of 
Information Technology by means of the Vicon Motion 
Kinematics Acquisition and Analysis System equipped with 
10 NIR cameras with the acquisition speed of 100 to 2000 
frames per second at full frame resolution of 4 megapixels 
and 8-bit grayscale (http://hml.pjwstk.edu.pl). 

The gait route was specified as a 5 meters long straight 
line. The acquiring process started and ended with a T-
letter pose because of requirements of the Vicon calibration 
process. Two types of motion were distinguished: a slow 
gait and a fast one. As a result of the acquisition procedure 
353 sequences for 25 men aged 20-35 years were stored in 
a gait database. 

For the purpose of human identification the mocap data 
were transformed into the tensor representation. After the 
dimensionality reduction by means of the MPCA feature 
tensors were subject to the classification process. 

Analysis of the MPCA results confirmed the expected 
type of dependency between the percentage Q of variation 
kept in each tensor mode and the total number of features P 
resulting from the dimensionality reduction (Fig. 2). The Q 
values were taken from the range of [99; 100] using a step 
value of 0,01. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Dependency between P and Q in the logarithmic scale 
 

In the first phase of the classification process the 
second-order feature tensors reduced by means of the 
MPCA were processed by the following methods from the 
WEKA software [25]: 10 variants of the kNN (k = 1..10) and 
the Naive Bayes. The best effectiveness 93,03% expressed 
by means of the correct classification rate (CCR) was 
obtained for the 3NN classifier using P = 287 features. As a 
consequence of this result, two other WEKA methods – 
Multilayer Perceptron and Radial Basis Function Network – 
were used solely for classification of the feature tensors 
previously reduced to 287 features. The maximum value of 
the CCR equal to 95,71% was achieved for the classifier 
based on the multilayer perceptron after 1600 epochs, 
whereas the best result of the Radial Basis Function 
Network was only 90,35%. 

In the next research phase, which was focused on the 
third-order feature tensors, the authors, inspired by the 
above-mentioned results, used the following methods for 
the purpose of classification: 5 variants of the kNN (k = 
1..5), the Naive Bayes with discretized attributes and the 
Multilayer Perceptron. The best effectiveness (CCR = 
100%) was obtained anew for the classifier based on the 
multilayer perceptron. 

The effectiveness of all methods was shown in Table 1 
along with the most appropriate values of Q and P. 
 
Table 1. Effectiveness of classification methods 

Classifier 
CCR 
[%] 

Q [%] P 
Tensor 
order 

1NN 92,49 [99,21; 99,33] 240 2 
2NN 90,88 [99,09; 99,20] 234 2 
3NN 93,03 [99,35; 99,44] 287 2 
4NN 92,22 [99,06; 99,08] 195 2 
5NN 91,96 99,34 246 2 
6NN 90,62 99,34 246 2 
7NN 89,81 [99,06; 99,08] 195 2 
8NN 88,74 [99,06; 99,08] 195 2 
9NN 87,67 [99,00; 99,05] 190 2 

10NN 86,06 [99,21; 99,33] 240 2 
Naive Bayes 90,35 98,00 99 2 

Multilayer 
Perceptron 

95,71 [99,35; 99,44] 287 2 

Radial Basis 
Function Network 

90,35 [99,35; 99,44] 287 2 

1NN 99,72 [99,12; 99,37] 343 3 
2NN 98,58 [99,12; 99,37] 343 3 
3NN 98,30 [99,09; 99,11] 286 3 
4NN 98,02 [99,09; 99,11] 286 3 
5NN 98,58 [99,00; 99,08] 271 3 

Naive Bayes + 
discretization 

98,02 [99,52; 99,54] 421 3 

Multilayer 
Perceptron 

100,00 [99,82; 99,84] 757 3 

 
Results of the most effective variants of the kNN, the Naive 
Bayes (denoted by NB and NBd) and – in case of the third-
order tensors – the Multilayer Perceptron (MLP) were 
depicted in Fig. 3 (second-order tensors) and Fig. 4 (third-
order tensors). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Dependency between CCR and Q for the most effective kNN 
variants and the Naive Bayes technique for the case of second-
order tensors 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Dependency between CCR and Q for the most effective kNN 
variants, the Naive Bayes with discretized attributes and the 
Multilayer Perceptron for the case of third-order tensors 
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The third-order tensorial representation turned out to be 
more effective for gait mocap data classification than the 
second-order variant. 
 
Conclusion 

In this paper the authors have discussed results of the 
research aiming at human identification based on gait 
motion capture data represented as second-order or third-
order tensor objects. High-dimensional tensor samples 
were reduced by means of the MPCA and subsequently 
classified using kNN, Naive Bayes (optionally with 
discretized attributes), Multilayer Perceptron, and Radial 
Basis Function Network. The most effective classifier for 
gait mocap data was based on the multilayer perceptron. 
However due to long time of computation it is worthwhile to 
continue searching for more efficient classification methods. 

The sizeable reduction of dimensions of tensorial 
samples based on mocap data was achieved at the 
percentage of variation kept in each mode of only a little 
less than 100. Furthermore, classification based on the 
reduced number of features turned out to be more effective 
than at the full variation kept in each mode. 

Conclusions drawn from experiments with mocap data 
will be helpful during the next stage of the research which 
was started analysing video sequences taken from the 
CASIA Gait Database (http://www.cbsr.ia.ac.cn/english/ 
Databases.asp) and will be continued using video material 
from the municipal surveillance system. 

Future research will also explore the influence of the 
feature selection methods on the effectiveness of the gait 
based identification process. The promising Invasive Weed 
Optimization (IWO) metaheuristic will be adapted to the 
searching the feature space for an adequate subset of 
features. Nonlinear techniques (Isomap, Landmark Isomap, 
Locally Linear Embedding (LLE)) are planned to be applied 
for dimensionality reduction as well.  
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