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Abstract. The brief overview of problems on Lyapunov stability analysis of DC-DC power electronic converters (PECs) is presented in this article. 
Problems of the PECs global and local stability analysis based on both continuous-time and discrete-time PECs models are discussed here. Special 
attention is addressed to the PECs stability analysis using direct Lyapunov method. 
 
Streszczenie. W artykule przedstawiono zwięzły przegląd tematyki analizy stabilności Lapunowa przekształtników energoelektronicznych DC-DC. 
Omówiono tutaj problematykę analizy stabilności globalnej i lokalnej PECs na podstawie modeli PECs czasu ciągłego i czasu dyskretnego. 
Szczególną uwagę zwrócono na analizę stabilności PECs za pomocą bezpośredniej metody Lapunowa. (Analiza stabilności Lapunowa 
przekształtników energoelektronicznych DC-DC: zwięzły przegląd tematyki). 
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Introduction 

Stability of power electronic converters is one of the 
most important problems related to their dynamics. In this 
article, a brief overview of Lyapunov stability of DC-DC 
power electronic converters (PECs) [1] is presented. 

The PECs belong to a class of dynamical systems 
where the switching occurs. The switching is linked with the 
PECs periodic behaviour. If the switching frequency is finite, 
then the PEC equilibrium state is steady-state periodic orbit 
(limit cycle), but not equilibrium point (points). 

The PEC is called an orbital asymptotic stable in the 
Lyapunov sense (Lyapunov stable) [2], [3], if its trajectory 
deviated from the steady-state periodic orbit returns back to 
it after a certain time. Otherwise, the PEC is unstable. The 
PEC stability means the convergence of its trajectories to 
the orbit. If the PEC is stable for any initial conditions, then 
it is globally stable (stable in the large). Apart from that, the 
PEC can be stable in a bounded region in state space. This 
region is called the region (basin, domain) of attraction [3], 
[4]. If the PEC is stable only for sufficiently small deviations, 
then it is locally stable.  

If the PEC is not stable, then it is unstable. So, the PEC 
instability and its character are interesting like the stability. 
The analysis of the PECs instability is a complementary 
problem in relation to the analysis of the PECs stability. It is 
possible to distinguish several types of instabilities. In [5], 
three types of the instabilities are considered: 
unboundedness, chattering and chaos. The PECs 
instabilities are divided into slow-scale and fast-scale [6]. 

The rest of this paper is devoted to the details of the 
analysis of the PECs global and local stability as well as 
their instability. 

The motivation of this paper comes from the need to 
supplement the power electronics literature for publication 
containing a brief overview of problems on the PECs 
stability and instability analysis. In particular, this paper 
should be complementary to the article [7] which in addition 
to other problems provides a brief overview on the PECs 
local stability analysis in discrete-time domain.  

The purpose of this paper is a brief overview of the 
literature on the analysis of the PECs stability and 
instability. A special attention is addressed to the PECs 
stability analysis using direct Lyapunov method [4]. 

Structure of this paper is as follows. A brief review of the 
literature on the PECs global stability analysis is presented 
after the introduction. The next section provides the review 
of literature on the PECs local stability analysis. Then, the 

analysis of the PECs instabilities is discussed. The last 
section contains summary and conclusions. 
 
Analysis of PECs global stability 

The analysis of the PECs global stability is based on the 
large-signal PECs models [8], often piecewise-linear 
models [9], [10]. They can be continuous-time models, as 
e.g. in [11], [12], as well as discrete-time, as e.g. in [13], 
[14], and [15].  

In all of the listed papers, the analysis of the PECs 
stability is carried out using the direct Lyapunov method [4]. 
Thus, the method takes a very important place in power 
electronic literature on the PECs stability analysis. In 
engineering practice, it is desirable that given dynamical 
system, e.g. PEC, has been exponentially stable [4]. This 
ensures exponential convergence of its trajectories to the 
equilibrium state (steady-state periodic orbit). This PEC 
stability can be analysed using the direct method [4]. 

In general, the direct Lyapunov method consists of the 
search for the Lyapunov function (LF) [4]. This function 
must satisfy specific criteria [4]. In the classical stability 
theory [4], stability conditions defined by LF are only 
sufficient conditions (and not necessary and sufficient) [4]. 
In other words, the stability implies the existence of 
Lyapunov function, but not vice versa. This means that the 
given dynamical system can be stable, but determination of 
LF failed. The failure in the search for LF for the system 
does not mean that it is unstable.  
The search for LF is usually very complicated, because 
there is no general rule for constructing these functions [4]. 
Often, search for suitable LF is an experiment. In the 
general case, the construction of LF is to propose LF 
candidate, and then check the conditions that it must fulfill 
[4]. If these conditions are fulfilled, then given system is 
stable. Otherwise, another LF candidate should be 
proposed. One of the best LF candidates is a function with 
a quadratic form [4]. Principles of construction of such a 
function, as well as other Lyapunov functions, are 
presented e.g. in [4].  

In power electronics, the methods and tools dedicated to 
hybrid dynamical systems stability analysis [16], [17] have a 
special importance. This is due to the fact that the PECs are 
hybrid systems [18]. These methods and tools are 
presented in detail in the cited papers: [16] and [17]. 
Therefore, these papers deserve a brief comment. 
In [16], Branicky presents the multiple Lyapunov function. It 
is a very effective tool for stability analysis of the switched 
and hybrid systems [16] including the PECs. The multiple 
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LF consists of member functions called Lyapunov-like 
functions. Each of Lyapunov-like functions corresponds to a 
specific system dynamics in a certain region in state space. 
All the Lyapunov-like functions as well as the entire multiple 
Lyapunov function should satisfy certain criteria [16], [19]. 
In [17], Johansson and Rantzer discuss the analysis of 
quadratic and piecewise-quadratic stability of nonlinear and 
hybrid systems. This analysis is based on (common) 
quadratic and/or (multiple) piecewise-quadratic Lyapunov 
functions.  Stability conditions based on multiple LF are less 
conservative from the ones which are formulated using 
common LF. This is the biggest advantage of the 
application of multiple LFs. However, the number of 
expressions (equations and/or inequalities) needed to 
determine the multiple LF is large. It is several times higher 
than that which is necessary to define common LF.  
Interpretation of different Lyapunov functions is presented in 
fig. 1. In particular, common quadratic Lyapunov function is 
shown in fig. 1.a. It is valid in each region R1, ..., R3 in state 
space. The discontinuous piecewise-quadratic Lyapunov 
function is shown in fig. 1.b. The member Lyapunov-like 
functions: V1, V2, and V3, are quadratic. This ensures that 
they are descending. Each of them corresponds to different 
region in state space: R1, ..., R3. These functions should 
create non-increasing sequences at the switching times, 
e.g. for V1: V1(t0)  V1(t3)  V1(t6).  Multiple Lyapunov function 
shown in fig. 1.c is weakened with respect to the piecewise-
quadratic function in fig. 1.b. The Lyapunov-like functions 
are polynomial, not quadratic. They need not be 
decreasing, but as previously, they should create non-
increasing sequences at switching times [19]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Interpretation of Lyapunov functions: a) common quadratic 
LF [17], b) discontinuous piecewise-quadratic LF [16], [17], 
c) multiple LF [19] 
 

In all the papers listed at the beginning of this section, 
i.e. [11], [12], [13], [14], and [15], the (multiple) piecewise-
quadratic Lyapunov functions are used. In [11] and [12] 
their domain is continuous time, but in [13], [14], and [15] – 
discrete time. The common quadratic Lyapunov function 
applies only in [15].  

The Lyapunov function search can be greatly simplified 
for the PECs because they are hybrid systems [18]. Then, 
the above mentioned methods and tools dedicated to these 
systems are used. A very comfortable solution is to present 

the PECs stability conditions as optimization problems [20] 
in terms of linear matrix inequalities (LMIs) [20]. They are 
semi-definite programming problems [20]. In power 
electronics, they are expressed only by quadratic and/or 
piecewise-quadratic Lyapunov functions. This way is used 
in many papers, e.g. in [11], [12], [13], [14], and [15]. These 
optimization problems can be solved using appropriate 
computer techniques and tools, e.g. Matlab package [21]. 
The package Robust Control Toolbox of Matlab contains 
LMILab solver [22]. It is destined to solve semidefinite 
programming problems. To solve such problems one can 
also apply other external solvers, e.g. SeDuMi [23]. A very 
comfortable and useful framework is Yalmip [24]. 

In addition, the optimization methods can be also used 
for other purposes. An example would be the estimation of 
the rate of trajectory convergence to the steady-state 
periodic orbit as shown e.g. in [13] and [14]. Apart from that, 
the LMIs are often applied in design of the PECs control. It 
is the so-called LMI-based control. 

The recommended method of analysis of the PECs 
global stability is presented in [15]. It is the direct Lyapunov 
method based on the results for piecewise-linear systems 
introduced in [17]. The basis of this analysis is the sampled-
data PEC model similar to that presented in [6]. Using the 
discrete-time framework is especially useful for the PECs 
where there is no single equilibrium point, and more. The 
PEC equilibrium state is the steady-state periodic orbit 
which is an attractor. It is represented by a (single) fixed 
point which is the big advantage of the discrete-time 
approach of the PECs modelling and stability analysis. 
Illustrative algorithm of the PECs stability analysis based on 
the approach presented in [15] is shown in fig. 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. The PECs stability analysis based on quadratic and 
piecewise-quadratic Lyapunov functions [15] 
 
Conditions of the PEC (exponential) stability are formulated 
there using common quadratic or piecewise-quadratic 
Lyapunov functions. The conditions expressed by common 
LF are necessary and sufficient conditions of the PECs 
global stability. Thus, if they are not fulfilled, it means that 
the PEC is unstable. On the other hand, the PECs stability 
conditions described by piecewise-linear LF are only 
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sufficient. If these conditions are not fulfilled, then additional 
analysis is necessary. One can try to estimate the region of 
attraction or use another Lyapunov function or method. The 
estimation of the region of attraction is based on common 
quadratic Lyapunov function. Hence, this region has an 
ellipsoid form. Systematic procedures to search for common 
and multiple Lyapunov functions are discussed there. They 
are based on optimizations problems in terms of 
parameterised LMIs. Division of state space into regions is 
achieved there using the PEC feedback control structure.  
As an example, stability analysis of bidirectional boost 
converter is discussed there. 

The other method of estimating region of attraction is 
presented in [12]. However, in contrast to [15], stability 
analysis of the PEC, i.e. buck-boost under PWM control, is 
carried out there using the continuous-time PEC model 
described by piecewise-linear differential inclusions. 

Another completely different approach to the PECs 
global stability analysis is introduced in [25]. This analysis 
uses the averaging technique. However, it is not classical 
averaging (approximation) in state space, because it is 
based on the theory of absolute stability [4]. As an example, 
stability analysis of PWM buck converter is discussed there. 

The next approach to the PECs stability analysis is 
shown in [26]. There is the classical Lyapunov theory, i.e. 
the direct Lyapunov method used as well. It examines a 
boundary control of buck converter with instantaneous 
constant-power loads. The PEC dynamics is analysed there 
in both switching states and various operating regions. 
There are established sufficient conditions for the PEC 
large-signal (global) stability. In addition, the region of 
attraction is derived.  

The special attention deserves the approach to the 
PECs stability analysis presented in [27]. The current-mode 
controlled boost converter is modelled there as nonsmooth 
Takagi-Sugeno fuzzy system. This model enables the 
analysis of global exponential PEC stability and the fast-
scale instabilities such as period doubling-bifurcations [1]. 
Stability conditions are formulated there also by means of 
piecewise-quadratic Lyapunov functions with LMIs. The 
main advantage of this approach is the possibility of design 
of switching fuzzy controller. The control scheme which has 
been shown there improves the fast-scale PEC stability [6] 
by extending stable period-one operations.  
 
Analysis of PECs local stability 

In engineering practice the analysis of the PECs local 
stability can be performed using both continuous-time and 
discrete-time small-signal PECs models [8].  

Linearized averaged PECs models [1], [28], [29] are 
among the most widely used continuous-time PECs 
models. These models are linear time-invariant. Hence, the 
methods dedicated for linear dynamical systems can be 
applied for the PECs stability analysis. Namely, in [28], Tse, 
Lai, and Iu present the method based on eigenvalues of 
Jacobian matrix J for Ćuk converter with hysteresis current-
mode control. The matrix J is calculated at equilibrium point 
xeq: J(xeq). The next step consists of determining the 
eigenvalues i (i = 1, 2, ..., n) of J(xeq) which are the roots of 
characteristic equation: det[I - J(xeq)] = 0. If the real parts 
of all i are negative: Re(i) < 0 for all i, then the PEC is 
stable. Otherwise, the PEC is unstable. 
The analysis of the PECs stability based on the linearized 
averaged models can also be carried out using any stability 
criterion for linear dynamical systems, e.g. Routh-Hurwitz 
criterion [3]. The application of this criterion is presented in 
[29] for buck converter with fixed frequency voltage-mode 
control. Moreover, a different approach to the PECs local 

stability analysis has been discussed there, namely, the 
ripple based index approach. 

The analysis of the PEC local stability in the discrete-
time domain can be performed using different methods, 
models and tools. Among them are some mentioned as: 
(i) methods based on eigenvalues of the Jacobian matrix of 
linearized Poincaré map [30], (ii) auxiliary state vector 
method [31], (iii) trajectory sensitivity approach [32], 
(iv) Filippov method [7].  
In [30], Dranga, Buti, and Nagy present conditions of the 
PEC local stability using the Poincaré map: xk+1 = P(xk) 
(k = 1, 2, ...). Stability of the steady-state periodic orbit is 
determined by stability of a fixed point: x*: x* = P(x*). 
Stability of the fixed point x* is defined by local behaviour of 
the Poincaré map in its small neighbourhood. If sufficiently 
small deviations around x* tend to zero, then a fixed point 
x* is asymptotic stable. Local dynamic behaviour of 
Poincaré map around x* can be determined using the 
linearization: xk+1 = Jk(x*)xk, where: Jk(x*) = dP(x)/dx |x* - 
the Jacobian matrix of the Poincaré map at x*. Stability of 
x* is defined by the location of the eigenvalues of Jk(x*): i, 
i = 1, 2, ... . The PEC is local asymptotic stable if all 
eigenvalues i are situated inside the unit circle in complex 
plane: |i| < 1. Otherwise, the PEC is unstable. As an 
illustrative example, stability analysis of dual-channel 
resonant buck converter with PWM control is presented 
there. It should be noted that there are readily available 
computer tools for determination of the Jacobian matrix at a 
fixed point, calculation of its eigenvalues and the analysis of 
loci of these eigenvalues in complex plane. 
The article [31] is a development of mentioned above [30]. 
Theoretical principles of the auxiliary state vector approach 
are presented there. Using this method allows to simplify 
the calculation of Jacobian Jk at a fixed point x*: Jk(x*). This 
simplification implies no need to calculate the derivative of 
the Poincaré map at x*. As a result, it is simpler and faster 
way to obtain the Jk(x*) in relation to the classical approach 
[30]. Stability analysis of PWM resonant buck converter is 
presented there as an example. 
The trajectory sensitivity analysis is discussed by Hiskens in 
[32]. In general, this method concerns nonsmooth hybrid 
systems where periodic motion appears [7]. Therefore, it 
can be used also for the PECs because they belong to the 
class of piecewise-smooth hybrid dynamical systems [7]. 
Stability analysis in [32] is based on hybrid model which is a 
differential-algebraic-discrete model. It allows to define the 
trajectory flow: x(t) = x(x0, t), x0 = x*(x0, t0). Sensitivity of the 
flow to disturbances of initial conditions is defined using the 
trajectory sensitivity matrix: x: x(x*, T) = x(x0, t)/x0, 
where: x* - fixed point, T – period of state-error trajectory. 
Stability of the steady-state periodic orbit is determined by 
the Poincaré map: xk+1 = Pxk = x(xk, ) which is linearized 
later around a fixed point x*. The result is the linear map: 
xk+1 = DP(x*)xk, where DP(x*) is dependent on the 
trajectory sensitivity matrix x(x*, T). A single eigenvalue of 
x is always equal 1, and the remaining are equal to 
eigenvalues of linear map DP(x*), i.e. Floquet multipliers [3]. 
The Floquet multipliers of DP(x*) define stability of 
nonlinear map P(x*), i.e. stability of the PECs steady-state 
periodic orbit. 
If the determination of the Poincaré map in closed form is 
not possible, then the Filippov method [7] can be applied.  
In [7], the local stability analysis of voltage-mode controlled 
buck converter using the Filippov method is described. The 
method is based on the calculation of the monodromy 
matrix [3]. It consists of components which are the state 
transition matrices defined before and after switching, and 
at switching instant along the switching hypersurface. This 
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last matrix is called the saltation matrix. The PECs stability 
is defined by the Floquet multipliers of monodromy matrix. 
In general, the multipliers are identical as the eigenvalues of 
the Jacobian matrix of the Poincaré map at a fixed point. 
The basic influence on the Floquet multipliers, i.e. on the 
PECs stability, has the saltation matrix. 
An efficient and convenient approach to the PECs stability 
analysis on the base of sampled-data PECs models is 
presented also in [2] and [33]. In [2], Fang presents the 
general sampled-data PECs modelling technique. Different 
sampled-data PECs models, i.e. exact block diagram 
model, large-signal nonlinear model, and small-signal 
linearized model are discussed there. The linearized 
sampled-data model is suitable for the PECs local stability 
analysis which has been presented there for buck under 
one-cycle control and buck under charge control. A similar 
modelling technique has been used in [33] by Song, Chen, 
and Liaw. The analysis of stability of period-one and period-
two orbits of buck converter under PWM voltage-mode 
control is presented there. The analysis is based on the 
eigenvalues of the Jacobian matrix at a fixed point. 

In practice, the PECs local stability analysis should be 
carried out including analysis of the PECs instability. This is 
due to the different properties and applicability of this 
analysis in continuous-time and discrete-time domain. 
 
Analysis of PECs instability 

Problems of the PECs instability are strictly related to 
different nonlinear phenomena occurring in the PECs. 
These phenomena are discussed in several articles, e.g. in 
[6], [34], [35] and in the book mentioned earlier [1].  

As mentioned in the section 1, the PECs instabilities are 
divided into slow-scale and fast-scale [6]. Low-frequency 
oscillations (slow-scale instabilities) can occur in the PECs 
e.g. via Neimark-Sacker bifurcations [1].  They are shown in 
[29] using Routh-Hurwitz criterion [3]. Loss of the PEC 
stability via Hopf bifurcations [1] is presented e.g. in [28]. 
These instabilities are also slow-scale. In order to determine 
the PEC stability and instability, the eigenvalues of the 
Jacobian matrix at equilibrium point are used there. In both 
cases the analysis of the PECs instabilities is based on 
linearized averaged models. 

As demonstrated in the cited papers, the slow-scale 
PECs instabilities can be effectively predicted and detected 
using the continuous-time linearized averaged PECs 
models. At the same time, e.g. in [6], [29], and [30], has 
been shown that these PECs models and the classical 
methods (e.g. Routh-Hurwitz criterion) are not suitable for 
the analysis of fast-scale nonlinear phenomena like period-
doubling bifurcations [1]. Thus, the continuous-time 
linearized averaged PECs models are useful only if the 
analysis of the PECs dynamics in wide frequency range is 
not required. This follows from the fact that these models 
ignore the PECs dynamics in the switching events. In 
addition, the details of the PECs dynamics inside the PECs 
operating cycle are also ignored. Hence, the linearized 
averaged PECs models are not suitable for analysis of the 
high-frequency dynamic phenomena, i.e. the phenomena 
with a frequency close to the ramp signal. However, the 
application of the ripple based index approach presented in 
[29] enables the analysis of fast-scale nonlinear 
phenomena like period-doubling bifurcations. So, this 
approach complements the averaged PECs models. 

On the other hand, the discrete-time (sampled-data) 
PECs models can be applied in a wide frequency range. 
Therefore, it is possible to use them for prediction and 
detection of both the slow-scale as well as the fast-scale 
PECs instabilities. E.g., in [6], Mazumder, Nayfeh, and 
Boroyevich present different PECs instabilities. In order to 

illustrate them, the bifurcation diagrams, time-waveforms, 
and loci of Floquet multipliers in relation to the unit circle in 
complex plane, are presented there. The loss of the PEC 
stability via Hopf bifurcations (slow-scale instabilities) and 
period-doubling bifurcations (fast-scale instabilities) are 
discussed there. Different ranges of the PEC operations, 
e.g. period-one, quasi-periodic, period-two and chaotic 
operations are emphasized there as well. The same 
problems are discussed in many other articles, e.g. in [7], 
[30], [31], and [33].  

Several papers include a comparative analysis of 
different methods of analysis of the PECs stability and 
instability. Namely, in [29], the PEC stability analysis based 
on the averaged PEC model using Routh-Hurwitz criterion 
is compared to the analysis based on the ripple index 
approach. In [6], the PEC stability analysis based on the 
linearized averaged PEC model is compared to the analysis 
based on the Poincaré map. In particular, the buck 
converter under voltage-mode control is analysed there.  
In [36], the multi-frequency high-order averaged PEC model 
and the low-order sampled-data PEC model are compared 
in relation to the local stability and instability analysis. The 
analysed PEC is boost converter with PWM control. 

In summary, in order to predict and detect the PECs 
instabilities an appropriate model of the PECs dynamics 
should be used. The linearized discrete-time (sampled-
data) PECs models can be applied in wide frequency range. 
Therefore, they can be used to predict and detect the PECs 
instabilities of both slow-scale as well as fast-scale. On the 
other hand, use of the continuous-time linearized averaged 
PECs models allows predicting and detecting only low-
frequency instabilities. However, application of the ripple 
based index approach enables the analysis of fast-scale 
nonlinear phenomena like period-doubling bifurcations. So, 
this approach complements the averaged PECs models. 

 
Summary and conclusions 

The aim of this paper, which provides an overview of the 
problems on the PECs stability, has been achieved. The 
overview shows that the analysis of PECs stability can be 
carried out using various PECs models and methods. Both 
the PECs models and the methods of the PECs stability 
analysis have different scopes of applicability in relation to 
each other. 

The recommended method of the PECs global stability 
analysis is the direct Lyapunov method. It is in fact the only 
method of the PECs global stability analysis. The direct 
Lyapunov method has many advantages. Firstly, it allows 
the analysis of the PECs stability in both continuous-time 
domain and discrete-time domain. Secondly, it is the only 
known tool enabling the estimation of the region of 
attraction. Thirdly, the analysis of the PECs stability based 
on the direct Lyapunov method can be carried out using 
universal computer techniques. In particular, convex 
optimization techniques with linear matrix inequalities are 
usually used. These optimization problems can be solved 
effectively using semidefinite programming software, e.g. 
SeDuMi with Matlab environment. Fourthly, general 
algorithm of the PECs stability analysis based on this 
method is analogous for each PEC, irrespective of its 
topology, control or operating mode (CCM/DCM) as well. 
Fifthly, the direct method has a transparent physical 
interpretation with respect to the measure of the PECs 
energy. 

In the case of the analysis of the PECs local stability 
and instability, the recommended method is the method 
based on the linearized Poincaré map. This is due to 
several reasons. Firstly, the PECs model based on 
linearized map can be used in a wide frequency range. 
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Hence, it can be applied to predict and detect both slow-
scale and fast-scale PECs instabilities. Secondly, the 
general algorithm of the PECs stability analysis is similar for 
different topologies and control of the PECs. Thirdly, there 
are ready available computer tools for determination of the 
Jacobian matrix at a fixed point, calculation of its 
eigenvalues and analysis of loci of these eigenvalues in 
complex plane. Fourthly, the results of stability analysis 
obtained using Poincaré map have a simple and 
transparent interpretation in relation to the loci of the 
eigenvalues of the Jacobian matrix inside unit circle in 
complex plane. The disadvantages in applying linearized 
maps include a more complex construction of these models 
compared to the linearized averaged PECs models.  
In practice, the simplified discrete-time method of analysis 
of the PECs stability can also be used, namely, the auxiliary 
state vector method. This simplification is no need to 
calculate the derivative of the Poincaré map. On the other 
hand, if the Poincaré map in closed form cannot be 
obtained, then the Filippov method based on the 
monodromy matrix and the saltation matrix is recommended 
to use. 

The direction of future works is the analysis of problems 
of the PECs practical stability analysis [4] in contrast to the 
Lyapunov stability analysis presented in this article. 
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