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Abstract. Two proper threshold broadcast encryption schemes are proposed for the mobile ad hoc network. The initial scheme achieves constant 
size private keys and O(n-t)-size ciphertexts. Under n+1-Decision Bilinear Diffie-Hellman Exponent (n+1-BDHE) assumption, it is provable security in 
the selective-identity model. Based on the dual system encryption, we propose our main construction. It also has constant size private keys and O(n-
t)-size ciphertexts. But it achieves full security under the static assumptions which are more natural than them in the existing schemes.  
 
Streszczenie. W artykule zaprezentowano dwie metody szyfrowania danych w mobilnych sieciach Ad Hoc. (Skuteczny dynamiczny algorytm 
szyfrowania danych w mobilnych sieciach Ad Hoc) 
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Introduction 

The concept of Broadcast Encryption (BE) was 
introduced by Fiat and Naor in [1]. In a broadcast encryption 
scheme a broadcaster encrypts a message for some subset 
S of users who are listening on a broadcast channel. Any 
user in S can use his private keys to decrypt the 
broadcasts. Any user outside the privileged set S should not 
be able to recover the message. The threshold broadcast 
encryption(TBE) problem is generalization of the concept of 
broadcast encryption. It was first introduced by Ghodosi et 
al. [2]. TBE has some advantages over traditional threshold 
encryptions. It is specified as follows:(1) The trusted party is 
eliminated and the system can be set up by individual users 
independently; (2) The broadcaster can choose the 
privileged set and the threshold value at the time of 
encryption which allows a certain dynamism in the system.  

Identity-Based encryption was first proposed by 
Shamir[3], which a major advantage was that it allowed one 
to encrypt a message by using recipient’s identifiers such 
as an email address. Now it has been an active area. The 
first practical identity-based encryption (IBE) scheme was 
proposed in 2001 by Boneh and Franklin [4], which was 
provably secure against adaptive chosen ciphertext attack 
in random oracle model. Then, many other kinds of identity-
based encryption were proposed [5-9]. Identity-based 
cryptography significantly reduces the system complexity 
and the cost for establishing and managing the public key 
authentication framework known as PKI (Public Key 
Infrastructure). As a result, we focus on the construction of 
identity-based threshold broadcast encryption (IBTHBE) in 
this paper. To the best of our knowledge, very few works 
have dealt with this problem. In [10], Chai and Cao et al 
propose a scheme based on identity. But the length of the 
ciphertexts is n +1 and the security relies on the random 
oracles. Vanesa Daza et al propose another scheme [11]. 
However, its security is still relying on the random oracles. 
The recent work [12] has short ciphertexts, but the security 
of their scheme based on the identity (IBTHBE) is also 
relying on the random oracles. In [13], authors also propo-
sed an efficient scheme in the standard model. But the se-
curity only achieves a weak security model-selective-
identity model. In [14], an efficient scheme was proposed. 
However, the public key size is too long and computation 
cost is high, which is not suitable to the ad hoc networks. In 
addition, the security is based on a strong hardness 
assumption. 

As a natural extension of the efforts to improve schemes 
in the standard model, we propose two new efficient 
identity-based threshold broadcast encryption schemes in 

this paper. The proposed schemes are constructed in the 
standard model. In the selective-identity security model, we 
reduce the security of our first scheme to the n+1-Decision 
Bilinear Diffie-Hellman Exponent (n+1-DBDHE) assumption. 
Based on the dual system encryption[15,16], the second 
scheme achieves the full security under the static 
assumption. In addition, two schemes have the dynamic 
feature which is suitable to mobile ad hoc networks. In the 
proposed schemes, any user can dynamically join the 
system as a possible recipient, and the sender can 
dynamically choose the set of recipients S and the 
threshold value t.  

 
Decisional bilinear Diffie-Hellman Exponent assumption 
(BDHE) 
The decisional bilinear Diffie-Hellman Exponent (BDHE) 
problem is defined as follows. Algorithm B is given as input 
a random tuple  

(g , h0, y1, , ny , yn+2, , y2n+2, T),  where yi = 
i

g . 

Algorithm B's goal is to output 1 when T = e(g,h0
1

)
n 

and 0 

otherwise. Let   TU =(g , h0, y1,  , yn, yn+2,  , y2n+2). 
Algorithm B that outputs b {0,1}  has advantage   in 

solving decision BDHE in G if  

|Pr[B(TU, e(g,h0
1

)
n 

) = 0]-Pr[B(TU, T) = 0]|  . 

The (t,  ) decisional BDHE assumption holds if no t-time 
algorithm has a non-negligible advantage   in solving the 
above game. 
 

Identity-based Threshold Broadcast Encryption 
(IDTHBE) 
More formally, an IDTHBE consists of five algorithms.  

Setup The randomized Setup algorithm takes as input 
a security parameter k and outputs some public parameters 
params, which will be common to all the users of the 
system. 

Extract The key generation algorithm is run by each 
user IDi. It takes as input some public parameters params 

and returns a correspondence private key
iIDd . 

Threshold Encryption The encryption algorithm takes 
as input a set of public keys corresponding to a set P of n 
receivers, a threshold t satisfying 1 t  n, and a message 
M. The output is a ciphertext C, which contains the 
description of P and t. 

Partial Decryption Partial Decryption algorithm takes as 
input a ciphertext C for the pair (P, t) and a secret key 

iIDd  



PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 9b/2012                                                      43 

of a receiver. The output is a partial decryption value ik  or 

a special symbol ⊥. 
Decryption The deterministic final decryption algorithm 

takes as input a ciphertext C for the pair (P, t) and t partial 
decryptions corresponding ki to receivers in some subset 
S P. The output is a message m or a special symbol ⊥. 

 
Security Model 

Setup The challenger runs Setup. Then challenger 
gives the resulting common parameter to A, and keeps 
master key secret. A issues the threshold parameters (n, t). 

Phase 1 A issues private key extraction and decryption 
queries adaptively. The adversary A adaptively issues 
queries q1, , qs0 , where qi is one of the following: 
         On a private key extraction query upon IDi, the 
challenger runs Extract to generate the private key 
associated to IDi, then sends it to A. 
         On a decryption queries, the challenger runs 
Decryption to generate decryption shares and gives them to 
A. 

Challenge  When A decides that phase 1 is over, it 
submits a set of identities S*, a threshold value t and two 
messages (M0, M1)on which it wants to be challenged. The 
adversary's choice of S* is restricted to the identities that he 
did not request a private key for in Phase 1. The challenger 
runs Encrypt algorithm to obtain (Hdr*, K) =Encrypt(S*, PK, 
t) and returns them to A. Note, A may already learned about 

the private keys of at most 1t  . There is the natural 

constraint that S* contains at most 1t  corrupted identities. 
Phase 2  The adversary continues to issue queries 

qs0+1, , q, where qi is one of the following:  
Extraction query (IDi), as in phase 1;  
 Decryption query, as in phase 1, but with the 

constraint that Hdr  Hdr*. The challenger responds as in 
phase 1. 

Guess  Finally, the adversary A outputs a guess 
{0,1}b  and wins the game if b = b . 
We say that if the above indistinguishability game allow 

no decryption oracle query, then the IDTHBE scheme is 
only chosen plaintext(IND-fullID-CPA) secure. If the 
challenge identity is outputted before the setup algorithm, it 
is called selective-identity security model. There have been 
many methods to convert an IND-fullID-CPA scheme to an 
IND-fullID-CCA scheme. Therefore, we only focus on 
constructing the IND-fullID-CPA scheme in this paper. 

 
 Our initial Constructions 
   We first give an initial construction which will derive a high 
efficient scheme in the next section. 

Let S = { 1, , nID ID } be n players where iID  pZ . 

These users want to form an ad hoc network. Our 
construction works as follows: 

Setup: To generate the system parameters, the PKG 
picks randomly generators { 2,g g , h , ih , 1 i n  } in G  

and an element   from pZ . Note that any user iID  will be 

associated to a different element it . This can be done by 

defining it = f ( iID ) for some n-1 degree polynomial 

function ( )f x , where (0)f  . PKG sets  it
iT g  for  

1 i n   and 1g g . The public parameters PK are  

     PK =( 1 2, , , ,ig g g T h , ih ,1 i n  ) 

and   is master key.  
 Extract(IDi) : To generate a private key for a user 

iID pZ , the PKG picks randomly i pr Z  and computes 

private keys as follows:  

0 1 2( , , )
iID i i id d d d

2( ( ) , , )i i i i it ID r r r
ig hh g H

, 

where 
1,

j
n ID

jj j i
H h

 
 . 

 Threshold Encryption: To encrypt a message M  for 
a set S = 1{ , , }nID ID  of n players, with threshold t n  

for the decryption, the idea is to set up an ( ,n N )-threshold 

secret sharing scheme where 2N n t  . The n public 

keys ( 1, , nT T ) of users implicitly define a 1n  degree 

polynomial. The idea is to compute the values of this 
polynomial in the points 0x  (This will lead to obtain the 

value of 1g ).Then a sender acts as follows: 

 Select a random element *
ps Z and compute 

1
sC g , 2 1 2( , )sC e g g M  and 3

1

( )i

n
ID s
i

i

C h h


  . 

  Choose a set S  of n t  dummy players, such that 

S S  . For each user iID S  , compute  

ij

i
i iID S

T T 


 and 

2

1

( , )i s
i

K
e T g




, where ij denotes the 

Lagrange coefficients. 
       The ciphertexts are 1 2 3( , , ,{ } )

ii ID S
C C C K  . 

Note: 
2 2

1 1

( , ) ( , )ii s t s
i

K
e T g e g g 


 by using Lagrange 

interpolation where ( )i it f ID  . 

Partial Decryption: Given the ciphertexts 

1 2 3( , , ,{ } )
ii ID S

C C C K  , the receiver iID S  with his 

corresponding private 
iIDd computes as follows: 

3 1

0 2 1 2

( , ) 1

( , ) ( , )i

i
i t s

i i

e C d
K

e d d C e g g
  . 

Decryption: Given the valid ciphertexts 

1 2 3( , , ,{ } )
ii ID S

C C C K  , a subset 1S S with 1| |S t  and 

corresponding t  partial decryption  jK , the algorithm 

computes with the whole set 1S S S    as follows: 

0i

i

i
ID S

K K 



  =
1 2

1

( , )se g g
and 2M K C  . 

 Our main construction 
The initial construction will be provable security in the 

selective-identity model. In this section, based on the dual 
system encryption over the composite group, we will give 
our main construction which will achieve the full security. 

Let G be cyclic groups of order N=p1p2p3 and l denote 
the maximum number of the set of possible users.  Let S = 
{ 1, , nID ID } be n players where iID  NZ . These users 

want to form an ad hoc network. Our scheme works as 
follows. 

Our construction works as follows: 
Setup: To generate the system parameters, the PKG 

picks randomly generators { g , 2g , h } in 
1pG  and an 

element   from NZ . Note that any user iID  will be 

associated to a different element it . This can be done by 

defining it = ( )if ID for some n-1 degree polynomial 
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function ( )f x , where (0)f  . PKG sets  it
iT g  for  

1 i n   and 1g g . The public parameters PK are  

PK =( 1 2 1, , , , , ,ng g g T T h ) 

and   is master key.  
 Extract(IDi) : To generate a private key for a user 

i NID Z , the PKG picks randomly i Nr Z  

and
30 1,i i pR R G  computes private keys as follows:  

0 1( , )
iID i id d d 2 0 1( ( ) , ).i i i it ID r r

i ig hg R g R  

         Threshold Encryption: It is same as initial scheme. 
Decryption: It is same as initial scheme. 
 

Correctness(Partial Decryption): In fact, if the ciphertexts 

0 1 2( , , )C C C C  is valid, then one can obtain the following 

equation holds. 

3 1

0 1 11,

( , )

( , )j

i
n ID

i ij j i

e C d

e d d C
 

=
11

2 0 11,

(( ) , )

( ( ) ( ) , )

i i

ji i i i

n ID rs
ii

n IDt ID r r s
i ij j i

e h g g R

e g hg R g R g


 




 

11 1

2 0 11, 1,

(( ) , ) (( ) , )

( ( ) ( ) , ) ( , ) ( ( ) , )

i i i

j ji i i i

n nID r IDs s
ii i

n nID IDt ID r r s s s
i ij j i j j i

e h g g e h g R

e g hg g g e R g e R g

 

   

  
 

=
2

1

( , )it se g g
. 

In the previous equations, the orthogonality property of 

1 2 3
, ,p p pG G G  is used. It is described simply as follows. 

Lemma 1[17] When ,
i ji p j ph G h G  for i j , 

( , )i je h h  is the identity element in 1G . 

By using this lemma, one can obtain  

0 1 11, 1
( , ) ( ( ) , ) (( ) , ) 1j i

n nID IDs s s
i i ij j i i

e R g e R g e h g R
  

   . 

 

 Table 1. Comparison of the Efficiency with the others Scheme  
Schemes C-Size pk Size Parings S.M 

[10] n +1 1 1 +2 t  Full 

[11] n t  1 3 t +2 t  Full 

[12] n  2 (0+ t )+1 Full 

[13] O( n t ) 2 2 s-ID 

[14] O( n t ) 2 0+ t  Full 

Initial O( n t ) 3 0+ t  s-ID 

Main O( n t ) 2 0+ t  Full 
 
Efficiency Analysis 

In our scheme, the size of ciphertexts is O( n t ) and 
the size of private key is constant as it consists of two group 
elements. This is the efficient construction which has full 
security in the standard model for the identity-based 
threshold broadcast encryption. In addition, if the values 

1 2( , )e g g and 2( , )ie T g can be precomputed and cached, so 

no pairing computations are needed at the phase of 
Threshold Encryption. Another advantage in our scheme is 
the natural security basis. The security of our initial scheme 
is achieved in the decision BDH assumption. And the 
security of our main scheme is reduced to three static 
assumptions. Table 1 gives the efficiency comparison 
between ours and the others IDTHBEs. From the table 1, 
our main construction has a natural security basis over [14]. 
In addition, our main scheme has much shorter public keys 
than the scheme in [14]. 
Note: R.O. denotes the random oracles. C-Size is the size 
of ciphertext and pk is the private keys. SM denotes the 

security model. Full and s-ID are full security and selective-
identity model. 
 
Security Analysis 
At first, we give the security proof of initial scheme. 

Theorem 1 Suppose the decision BDHE assumption 
holds. Then the proposed initial scheme above is 
semantically secure against selective identity, chosen 
plaintext attacks. 

Proof  Suppose an adversary A can attack the initial 
scheme with advantage  . We will show that there is an 
algorithm B that solves the decision BDHE problem in G 
with the advantage  . For a generator gG and  Zp, 

set yi =
i

g G. Algorithm B is given as input a random 

tuple (g, h0, y1, , yn, yn+2, , y2n+2, T). Algorithm B's goal 

is to output 1 when T = e(g,h0
1

)
n 

 and 0 otherwise. 

Algorithm B works by interacting with A in a threshold 
selective-identity game as follows:Init: A outputs a set 

*S =( * *
1 , , nID ID ) of identities that it wants to attack, and a 

set S of identities that it wants to corrupt, with 

| | 1S n  and *| | 1S S t  . 

Setup: B does the following:  

  First, B picks a random *
pZ  , sets 1 1g y g   

and 2 ng y g  . Then B selects randomly 1 2, , , n    in 
*
pZ  and sets 1/i

i n ih g y
  for 1 i n  . In addition, B 

selects randomly *
pZ  and sets 

*

11
i

n ID
n ii

h g y
 

  . 

     Next, B selects 1n  random integers 

1 2 1, , , n     pZ . Let ( )f x be the degree 1n   

polynomial implicitly defined to satisfy (0)f   and 

( )i if ID   for iID S  , note that B does not know 

f since it does not know  . For iID S  , B 

computes i
iT g . Otherwise, B computes i = ( )if ID  = 
1

0 1

n

j jj
   


 with the Lagrange coefficients j . Note 

that these Lagrange coefficients are easily calculated since 

they do not depend on f . Then B sets 0
1

j

j
i jID S

T g T 


   . 

Finally, B gives the public keys PK=( 1 2 1, , , , , ,g g g h T   

1, , ,n nT h h ) to A. 

Query phase 1: A issues up to qs private key 
generation queries to the uncorrupt servers. Each query qi 
works as follows: Suppose A asks for the private key 

corresponding to an identity *( )i iID S ID S  . The 

restriction ensures that ID * 0iID  . B first computes the 

Lagrange coefficients 0 1 1, , , n     such that ti = f(IDi) = 
1

0 1

n

j jj
   


 . Then B selects a random r  pZ  and 

computes the corresponding private keys as follows: 

0 1 2( , , )
iID i i id d d d  

= (
1

10
1 2

n
j jjg g

  


 * *

1 11,
( ) ( )ji i i i i

n IDID r ID ID r
n j n ij j i

g y y  
      , 

0
*ID IDi ir

ig y


 , 
0

*

1 11, 1,
( ( ) ) ( ( ) )

jj
jj j i i

n j n j i

n n yID IDg ID IDr
y yj j i j j i




    



     ) 

One can verify 0 1 2( , , )
iID i i id d d d  is the valid simulation. In 

fact, 
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1

10
1 2

n
j jjg g

  


 * *

1 11,
( ) ( )ji i i i i

n IDID r ID ID r
n j n ij j i

g y y  
       

=
1

10 0
1 1 2

n
j jj

ny g g
   








*

0

1

1

( )i iID ID r
n i

n

y
y


 



*

11,
( )ji i i

n IDID r
n jj j i

g y 
     

=
1

10
2 2

n
j jjg g

  



*

0

1

1

( )i iID ID r
n i

n

y
y


 



*

11,
( )ji i i

n IDID r
n jj j i

g y 
     

=
1

0 1

2

n
j jjg

   



 0

* * *

1 1( ) ( )
i

ID IDi i i i i iID ID ID IDr
n i n iy y

 

 
   

*

11,
( )ji i i

n IDID r
n jj j i

g y 
     

=
1

0 1

2

n
j jjg

   



 **

1 11,
( ) ( )ji i i i i i

n IDID ID r ID r
n i n jj j i

y g y  
     

 

=
1

0 1

2

n
j jjg

   



 **

1 11,
( )ji i i i i

n IDID ID ID r
n i n jj j i

g y g y   
     

 

= 2 ( )i i it ID r
ig h h  *

1 11
(( / ) )ji i i

n IDID r
n i n jj

g y g y 
     = 2 ( )i i it ID r

ig h h  ; 

0 0
* *

i

ID ID ID IDi i i ir r
ig y g g

  

  = irg 
; 

0
*

1 11, 1, 1,
( ( ) ) ( ( ) ) ( ) ,

jj
jj j ji i

n j n j i

n n nyID ID IDg ID IDr r
jy yj j i j j i j j i

h




    



     
   

where 0
*

i

i
i i

r r
ID ID

 
 


 .  

Challenge: A outputs two same-length messages M0 
and M1 on which it wishes to be challenged. B picks a 
random b {0,1}  and constructs the challenge ciphertexts 

as follows: 
*C = * * *

1 2 3( , , ,{ })iC C C K   

=
*

1

00 1 0 0( , ( , ) , ,{ } )
n

i ii

i

ID

b i ID Sh M e g h T h K
  



  

where S0 is a set of n - t dummy users. In addition, Ki is 
computed in the following manner: 

B first chooses a set 0S  of n t  dummy users such 

that *
0S S  . For each dummy user 0iID S , B 

computes the Lagrange coefficients  ji  with 1 j n   

such that * *( )
i

j j ji iID S
t f ID  


    , where i  is known 

to B since B can compute it by using 1 2 1( , , , )n     and 

satisfies i
ig T   . Then B computes * *

ji

i
j iID S

T T 


  . 

Finally, B computes  iK   
1

20

1

( , )
n

ji iie h g
   

. Let 0
sh g  for 

some unknown pZ  . If 
1

0( , )
n

T e g h  

 , one can obtain 

that *C is a valid encryption for bM . In fact, *
1C = cg ,                 

*
2C = 1 0( , )bM e g h T = 1 0( , )bM e g h 1

0( , )
n

e g h  

 

= 1 0( , )bM e g h 1

0( , )
n

e g h 

 = 1 1( ( , ) ( , ))
n s

bM e g g e g g   

 = 1( , )s
b nM e g g y = 1 2( , )s

bM e g g . 

*
3C =

*
1

0

n
i ii

ID
h
 


 =

*
1( )

n
i ii

ID sg
 


 =

*

1
( )j j

n ID s

j
g g 

  

=
* *

1 11 1
( ( ) ( ) )j j j

n nID ID s
n j n jj j

g y g y 
      =

1

( )i

n
ID s
i

i

h h

 . 

and  

1 1 22 20 1

1 1 1

( , )( , ) ( , )
n n n ji sji i ji i si i ii

i
e T ge h g e g g

K       


  


=
2

1

( , )s
ie T g . 

If T is a random element of 1G , *C gives no information 

about B's choice of b. 

Phase 2: The adversary continues to issue queries and 
B responds as in phase 1. 

Guess:  A outputs a guess {0,1}b  and wins the 

game if b b  . If b b  , B will output 1 to indicate that B 
solves the DBDHE problem, otherwise it outputs 0 to mean 

that it learns nothing from *C . 

When A outputs 1, it means 1
2| ( ) |Pr b b    . 

Otherwise 1
2( )Pr b b  .  Therefore, we have 

1

0

1 1
| Pr( ( , ( , ) ) 0) Pr( ( , ) 0) | | | .

2 2

n

B TU e g g B TU T  


        

Static Hardness Assumption 
In this section, we give our complex assumption. These 
assumptions have been used in [15,16]. 

Assumption 1(Subgroup decision problem for 3 

primes) Given (N= p1p2p3, G , 1G ,e), select randomly 

1pg G ,
33 pX G ,

1 21 p pT G ,
12 pT G and set D=( N= 

p1p2p3, G , 1G ,e, g, 3X ). It is hard to distinguish 

1T from 2T . The advantage of an algorithm is defined as  

Assumption 2 Given (N= p1p2p3, G , 1G ,e), pick 

randomly 
11, pg X G , 2 ,X

22 pY G , 
33 3, pX Y G , set 

D=( N= p1p2p3, G , 1G ,e, g, 1 2 3 2 3, ,X X X Y Y ). Then select 

1T G ,
1 32 p pT G at random. It is hard to distinguish 

1T from 2T .  

Assumption 3 Given (N= p1p2p3, G , 1G ,e), pick 

randomly 
1pg G , 2 ,X

22 2, pY Z G , 
33 pX G , 

, Ns Z  , set D=( N= p1p2p3, G , 1G , e, g, 

2 3 2 2, , ,sg X X g Y Z ). Then compute 1 ( , ) sT e g g  and 

pick randomly 2 1T G . It is hard to distinguish 1T from 2T .  

Next, we will prove the security of the main scheme. 
We first define semi-functional keys and semi-functional 

ciphertexts. Let 2g  denote a generator of 
2pG . 

Semi-functional keys:  At first, a normal key  

0 1 2( , , )d d d  is obtained using the  Extract algorithm. Then 

some random elements 0 1 2, ,    are chosen in NZ . The 

semi-functional keys are set as follows. 
0

0 0 2d d g  , 1
1 2d dg  , 2

2 2 2d d g   . 

Semi-functional ciphertexts: At first, a normal semi-

functional ciphertext  0 1 2( , , )C C C    is obtained using the 

Encrypt algorithm. Then two random elements 1 2,   are 

chosen in NZ . The semi-functional ciphertexts are set as 

follows: 0 0C C , 1 2
1 1 2C C g   , 2

2 2 2C C g  . 

    We organize our proof as a sequence of games:  
Gamereal:  This is a real threshold IBBE security game. 
For 0 i q  , the Gamei is defined as follows. 

Gamei:  Let   denote the set of private keys which 
the adversary queries during the games. This game is a 
real IBBE security game with the two exceptions: (1) The 
challenge ciphertext will be a semi-functional ciphertext on 

the challenge set *S . (2) The first i keys will be semi-
functional private keys. The rest of keys in   will be 
normal.  
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 Note: In game0, the challenge ciphertext is semi-
functional. In gameq, the challenge ciphertexts and all keys 
are semi-functional. 

Gamefinal : This game is same with Gameq except that 
the challenge ciphertext is a semi-functional encryption of 

random group element of 1G .  

        Lemma 2 Suppose that there exists an algorithm A 
such that Adv

realgame A 
0

Advgame A =  . Then we can build 

an algorithm B with advantage   in breaking Assumption 1. 
       Lemma 3 Suppose that there exists an algorithm A that 
makes at most q queries and such 
that

1
Adv

kgame A


 Adv
kgame A =   for1 k q  . Then we can 

build an algorithm B with advantage   in breaking 
Assumption 2. 
        Lemma 4 Suppose that there exists an algorithm A 
that makes at most q queries and such 
that Adv

qgame A  Adv
finalgame A =  . Then we can build an 

algorithm B with advantage   in breaking Assumption 3. 
By using the proof of Theorem 1 and techniques in 

[16], we can obtain the proof of these lemmas. For the 
concision, we omit them here. Then we have the following 
theorem. 

Theorem 5  If Assumption 2, 3 and 4 hold, then our 
scheme is IND-ID-CPA secure. 

 
Conclusions  

Two new constructions of identity-based threshold 
broadcast encryption are proposed for ad hoc networks. In 
proposed schemes, the broadcaster can dynamically 
choose the set of recipients and the threshold value t. Both 
schemes have short ciphertexts, where the length of 
ciphertexts achieves O(n-t). In addition, we reduce their 
security to the decision n+1-BDHE problem and some static 
assumptions respectively. 

Unfortunately, in our schemes, the total number of 
possible users must be fixed in the setup. It is an interesting 
problem to construct a scheme without the above 
constraints in the standard model.  
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