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Surface Effect on the Buckling of a Stretchable Electronic Structure 
 
 

Abstract. The structure of a stiff thin film on a compliant substrate has important applications in stretchable electronics. However, such structures 
are micro-nano-order of magnitude, where surface effects cannot be ignored. Gurtin-Murdoch theory is applied to model the thin film including 
surface effects. Through energy method, the size-dependent relations between the buckling features, material properties and geometric parameters 
are deduced. At last the influence of surface effects is illustrated by the case of silicon film and PDMS substrate.  
 
Streszczenie. Badano strukturę cienkiej warstwy nałożonej na podłoże. Taka struktura może mieć rząd nanometrów kiedy efekt podłoża nie może 
być ignorowany. Zaproponowano model matematyczny struktury bazując na teorii Gurtin-Murdoch. (Wpływ podłoża na odkształcenie elastycznej 
struktury elektronicznej)  
 
Keywords: Surface effects, compliant substrate, thin film, buckling 
Słowo. Efekt powierzchniowy, cienka warstwa, elektronika. 
 
 
1. Introduction 

The structure of a stiff thin film on a compliant substrate 
has important applications in microelectronics, biology, 
medicine, etc. Specially, the buckling of such structure is 
applied in international advanced stretchable electronics, 
making controlled deformation of electronic be realized [1]. 
Currently, the researches about the buckling of such 
structure are based on the classical plate theory [2] and do 
not consider surface effects. However, in microelectronics, 
such structures are micro-nano-order of magnitude. With 
the reduction of dimension, the proportion of surface region 
increase and surface effects cannot be ignored, which have 
essential influence on the mechanical behaviors for the 
whole structure. 

To incorporate surface effects, Gurtin and Murdoch 
proposed surface constitutive equations [3, 4], defined 
surface elasticity constants and elaborated a generic 
continuum model of surface elasticity. In this model, the 
surface of a solid is regarded as a negligibly thin layer 
adhering to the underlying material without slipping, and the 
material constants for both are different. They also 
supposed that the deformation of surface and bulk is 
continuous. Based on the Gurtin-Murdoch theory, Miller and 
Shenoy studied the scale effect of nano-rods and nano-
plate under stretching and bending, and their size-
dependent elastic properties [5]. C.W.Lima and L.H.He 
studied size-dependent nonlinear response of thin elastic 
films by Hamilton’s principle [6]. P.Lu etc. proposed a 
general thin plate theory including surface effects, which 
can be used for size-dependent static and dynamic analysis 
of plate-like thin film structures [7]. 

In this paper, based on the Kirchhoff plate theory, the 
constitutive equations built by Gurtin and Murdoch are 
applied to model a stiff thin film on a compliant substrate 
which includes surface effects of the film. Through energy 
method, size-dependent governing equations for buckling 
are deduced. And the buckling features about material 
properties and geometric parameters are solved. At last the 
influence of surface effects is illustrated by the case of 
silicon film and PDMS substrate. In section 2, the theoretical 
analysis considering surface effects are made to deduce the 
equilibrium wave number, amplitude and critical condition. 
In section 3, the influence of surface effects on buckling is 
discussed quantitatively. In section 4, the summary is made. 

 

2. Theoretical analysis considering surface effects 
2.1 Model of a stiff thin film on a compliant substrate 

An elastic stiff film is bonded to a compliant elastic 
substrate without slipping, which in turn is bonded to a rigid 
support. The substrate is imposed a uniaxial prestrain, but 

the film is free. After releasing the prestrain in the substrate, 
the film buckles. The thickness of the film and substrate are 
h and H, respectively. A coordinate system is established, 
by setting the origin at the center in mid-plane of the film, as 
Fig.1. The substrate is described by the small deformation 
theory, while the film is described by the large deformation 
plate theory. Since the length of the system (x2) is much 
larger than the amplitude of buckling, this problem can be 
simplified as a plane plain problem.  

In the model proposed by Gurtin and Murdoch [3, 4], the 
surface of a solid is regarded as a negligibly thin layer 
adhering to the underlying material without slipping, and the 
material constants for both are different. The non-classical 
boundary conditions, the surface stress-strain relations, and 
the equations of classical elasticity for bulk material together 
form a coupled system of field equations. Here we neglect 
surfaces thickness, as Fig. 2. The upper and lower surfaces 
are S+ and S– (x3=±h/2), respectively. The mid-plane is So 
(x3=0). The upper surface S+ is free, but the lower surface S - 
sustains a normal pressure P3 caused by the interaction 
stress of the substrate. 

 
Fig.1 Model of a stiff thin film on a compliant substrate 

 
Fig.2 Thin film and its surfaces 

 
2.2 Equilibrium equation and constitutive relation 

The equilibrium equations without body force for the bulk 
and surfaces [3, 4] of the film are given by 

(1) , 0ij j   

(2) , 3 , 3 3 30;: :i i i i iS PS                
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where 3i
 and   are bulk and surface stresses at S+ and S -. 

Integrating (1) through the thickness and then substituting 
(2), the equilibrium equations include surface stresses 

(3) , , 3 3, 0i i i iPN              

where the membrane forces Niβ are the integral of the 
stresses σiβ.The generalized membrane forces containing 
surface stresses are defined as *

i i i iN N        .Then the 

equilibrium equations (3) can be further written as  

(4) 3
*

3, 0i iPN       

Assuming that both the bulk and surfaces of the film are 
homogeneous and isotropic, the constitutive relation of the 
bulk is expressed by 

(5) 
ff

ff
11

ij kkj iji

vE
vv

       
 

The stress component σ33 is usually assumed to be zero in 
the classical plate theories. However, the surface balance 
conditions (2) cannot be satisfied. To consider the 
weakness, it is assumed that the stress component σ33 

varies linearly through the thickness and satisfies the 
balance conditions on the surfaces, 

(6) 33 33 33 33 33 3( ) / 2 ( ) /x h            

It is noted that the relation (6) is also suitable for the 
materials with isotropic properties. The stress-strain 
relations (5) can be simplified as 

(7) 
ff f

33
ff f

11 1
i i ii

vE v
vv v

      
 


 



  

If the upper and lower surfaces have same material 
properties, the stress-strain relations are described as [3,4,8] 

(8) 
0 , 0 0 0 0

3 0 3,

( ) )) 2( (u

u

      

 

         

 

   

 

    


  

where τ0 is residual surface stress under unconstrained 
conditions,

 
λ0 and μ0 are the surface Lame’ constants. 

In Kirchhoff plate theory, the displacement components 
are assumed to have the form 

(9) 
o o o

3 3, 3 3,u u x u u u       

where o
iu is the displacement components of the mid-plane. 

The nonlinear strains are
 
 

(10) , 3,
0

3,,( ) / 2u u u u            

where 0
 are prestrains. 

 

2.3 The interaction stress 
Now we deduce the interaction stress of the substrate. 

According to the stress compatibility equations 2 0  , a 

stress function 1 3( , )x x is introduced, 11 ,33 33 ,11, ,       

13 31 ,13      , with the general solutions 

(11) 
1 3 1 3 2 3

3 3 3 4 3 3 1

( , ) [ cosh( ) sinh( )

cosh( ) sinh( )]cos( )

x x C kx C kx

C x kx C x kx kx

   

      

By the small deformation theory, the strains are 

(12) , ,( ) / 2u u          

The physical equations of plane strain are 

(13)    11 33 13 11 s 33 33 s 11 s 13 s, , , , 2(1 ) /v v v E                    

where Es and vs are Young's modulus and Poisson's ratio of 
the substrate. And the plane strain effective modulus and 
Poisson's ratio are 2

f f f/ (1 )E E v  and s s s/ (1 )vv v  .From 

the stress function, the stresses are 
(14)

11 1 1 3 2 3 3 3

3 3 4 3 3 3

2

33 1 1 3 2 3 3 3 3

4 3 3

13 1 1 3 2

cos( ){ cosh( ) sinh( ) [2 sinh( )

cosh( )] [ sinh( ) 2 cosh( )]}

cos( )[ cosh( ) sinh( ) cosh( )

sinh( )]

sin( ){ sinh( ) co

k kx C k kx C k kx C kx

kx kx C kx kx kx

k kx C kx C kx C x kx

C x kx

k kx C k kx C k







  

  

   



  






3 4 3

3 3 3 3 3 3

sh( ) [sinh( )

cosh( )] [ sinh( ) cosh( )]}

kx C kx

kx kx C kx kx kx



  

 

By substituting (14) into (13) the strains are 

(15) 

11 s 1 1 3 2 3

3 3 s 3 3

4 3 3 3 s s

33 s 1 1 3 2 3

3 s 3 s 3

( 1) cos( ){ cosh( ) sinh( )

[ sinh( ) / ( 1) cosh( )]

[ sinh( ) cosh( ) / ( 1)]} /

( 1) cos( ){ cosh( ) sinh( )

[2 sinh( ) / ( 1) cos (

2

2

h

k v kx C kx C kx

C kx v kx kx

C kx kx kx v

k v kx C k kx C k kx

C v kx v kx k

k k

E





  

  

  

   

  





3

4 3 3 s 3 s s

13 s 1 1 3 2 3

3 3 3 3

4 3 3 3 s

)]

[ sinh( ) 2 cosh( ) / ( 1)]} /

2 (1 ) sin( ){ sinh( ) cosh( )

[ sinh( ) cosh( )]

[sinh( ) cosh( )]} /

x

C kx kx v kx v

k v kx C k kx C k kx

C kx kx kx

C kx kx kx

E

E



  

   

 

 



According to (12), the displacements can be deduced by 
integrating(15) 

(16) 

1 s 1 1 3 2 3

3 3 s 3 3

4 3 3 3 s s

3 s 1 1 3 2 3

3 s 3 s 3

( 1) sin( ){ cosh( ) sinh( )

[ sinh( ) / ( 1) cosh( )]

[ sinh( ) cosh( ) / ( 1)]} /

( 1) cos( ){ sinh( ) cosh( )

[( 1)

2

2

cosh( ) / ( 1) sinh(

k k

E

k

u v kx C kx C kx

C kx v kx kx

C kx kx kx v

u v kx C kx C kx

C v k v k

k

x kx x

  

  

  

   

   





3

4 s 3 s 3 3 s

)]

[( 1) sinh( ) / ( 1) cosh( )]} /C v kx v kx kx E   

Because the buckling mode is similar to cosine curve, 
the deflection in the mid-plane of the film is assumed as 

(17) o
3 1cos( )u A kx  

The normal displacement is continuous and the shear 
stress is ignored at the interface [2]. The lower surface of 
the substrate is fixed, so the boundary conditions are 

(18) 
o

13 1 3 1 3 1

1 1 3 1

( ,0) 0 , ( ,0) cos( ),

( , ) ( , ) 0

x u x u A kx

u x H u x H

  
   

 
 

According to (14) and (16), the constants Ci can be solved 
(19) 2 s 3 s,/ / 22C A CE EAk    

 
 

s

1

s

2

s s
4

s

2 2 2
s

s2 ( 1)

[2 sinh ( ) 3cosh(2 ) 1]

4 6sinh(2 ) 2 [2 sinh(2 )]

( 1) [2 cosh(2 ) 1] 4cosh(2 ) 4

2 3sinh(2 ) [2 sinh(2 )]

A
C

k v

A v kH kH
C

kH kH H kH

E

k

E

v

v k H kH kH

kH kH v kH kH




 


  

    
  

By substituting (19) into (14) the interaction stress is  

3 33 1 s s 1

2 2
s

s s s

( , 0) ( ) ( )

( ) [2( ) cosh(2 ) 1] 4 cosh(2 ) 4

2( 1)[2 (1 (3 ) sinh(

, cos

1

) 2 )]

P x g v Ak kx

v kH kH kH

v kH v v

H

kH

E  

   


   



 

For the thick substrate, kH is so large that the interaction 
stress can be simplified as 

(20) o
3 s 1 s 3

1
c

1
os( )

22
P Ak kE kEx u  

 

2.4 Displacement of the film 
Since the system only sustains uniaxial prestrain, it is 

believed that prestrains 0 0
12 22 0   . For the plane plain 

problem, load, stress and displacement are independent of 
x2, and u2=0. Assuming that there is not residual surface 
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stress, τ0=0 (residual surface stress is too small to be 
neglect, referring to section 3.1), the equilibrium equations 
(4) can be simplified as 

(21) *
11,1 0N    

From (10) and (9), stains can be simplified as 
(22) 0 o o o

11 11 1,1 3,1 3 3
2

,11) /( 2u u x u       

According to (7) and (22), by replacing Young’s modulus 
with the effective modulus, stresses can be simplified as 

(23) 
0 o o o
11 1,1 3,1 3

2
11 3,11 f 33

3 3

f

33

) / 2 ][ (

(1 / 2 / )

E u u x u v

x h P

  

 





   

 

where the plane strain effective values are ff
2
f/ (1 )E E v , 

f f f/ (1 )v v v  . From (8) to (9), surface stresses can be 

simplified as 

(24) 0 o o o
11 0 0 1

2
1 1,1 3,1 3,11) ) / 2( 2(2 ]/[ u u hu           

From (23) and (24), the general membrane forces can be 
simplified as 

(25) * 0 o o
11 11 0 0 11 1,1 3

2
,1) )(2 [2 2 ( ]N N u u        

where the membrane force is 

(26) 0 o o
1

2
11 1 1,1 3,1f 3 f[ ( ) / 2] / 2N uE u v hh P      

By substituting (25), (26) and (20) into (21), the 
governing equations are expressed by displacements as 

(27) 
o o o o

0 0 3,1 3,11 1,11 f s 3f ,14( 4 2 )( 0)E h u u u khv Ē u        

By substituting (17) into (27) and solving the differential 
equation, the in-plane displacement is obtained 

(28) o 2
1 1 1 1sin(2 ) / 8 sin( )u A k kx A kx   

where f1 f 0 0/ 4( 4 2 )sE Eh v h     . If neglecting the 

balance conditions on the surfaces, then 1 0  . 
 

2.5 Energy of the system 
The total energy of the film/substrate system contains 

strain energy in the film and work done by interaction stress 
of the substrate. And strain energy in the film includes bulk 
strain energy and surface strain energy, 

(29) 
f

s 3 3

d d d ,

d

V S S

S

U V S S

P uU S

          


     







  



  


  

The total energy is 

(30) f sU U U    

According to (22) and (24), (29) can be simplified as 

(31) 11 11 11 11 11 11f d d d
V S S

V SU S     


     


       

Considering periodicity of the total energy in x1 direction, the 
energy density per unit area is 

(32)  2 / /2 o
11 11 3 11 11 11 11 3 3 10 /2

d d
2

k h

h
x

k
PuU x


    


   

 
       

By Substituting (22)-(24) into (32) and integrating that, the 
energy density of the system are obtained 
(33)

 
 



4 4 2 2 2 2 0 2 0
0 0 11 11

4 4 2 2 4 2 0 2

2

2 0 2
f 11 11

2 2 2

f f 1

6( 2 ) 2 ( 4 4 ) 16(

3 (2 24 24 ) 48(

)

)

(12 6 ) / 48s

U A k A k h k

h A k A h k k k

A k h k v h

E

kvE

    

  



     

    

 





 

If we neglect the balance conditions on the surfaces and 
the surface elasticity, (33) can be simplified as 

2
4 4 2 2 2 2 0 0f

11 11
23 2[ )( 12 ]

4
4

8
) 8(

4
sU

A k h
A k A k h

E E
k       

 
2.5 Critical analysis 

To analyze the critical state, the energy density is 
minimized by setting / / 0U A U k       . The equations 

about A and k are  

(34) 3 2 2

f 0 fs s0

24 ( 6 12 ) 12 0h k h v kE h E E       
2 3 2 2 0

f 0 0 0 0 11

2 2 0 2 2

f 11 f

2

1

2

1 s f 1

2 ( 2 4 ) ( 2 )(3 8 8 )

( 8 8 ) (3 5 / 12 2 ) 0

2E

E

A k h h k

hk h k h k kvE v h

k   







     

      
  

From the first equation in (34), the equilibrium wave 
number keq can be solved, which is independent of prestrain. 
From the second equation in (34), the equilibrium amplitude 
Aeq is also solved, which is related to prestrain. By setting 
Aeq=0, the critical prestrain εcr is obtained. From (25) and 
(26), the critical general membrane force is 

(35) cr
*
cr f 0 0( 4 4 )hN E       

If the balance conditions on the surfaces are neglected, the 
quadratic term in (34) about k can be omitted. If the surface 
elasticity is also neglected, (34) can be simplified as  

3
f

2 3 2 2 0
f f

3
s

s11

3 0

6 (3 24 ) 9 0

h k

A k h hk h

E

E Ek

E

E 

 

   

 

And the equilibrium wave number keq and the critical 
prestrain εcr can be solved 

(36)    1/3

eq fs

/3

crf

21
,

1
//

4
33 sh

Ek E EE   
 They are the same as the result in the traditional analysis 

[2].That is to say, the equilibrium equations (34) 
considering surface effects can degenerate to the traditional 
ones. 

 

3. Discussion 
3.1 Material parameters 

In this section an example of silicon film and PDMS 
(Polydimethylsiloxane) substrate is applied to analyze 
quantitatively the influence of surface effects on buckling. 
Tab.1 shows the Young’s modulus, Poisson's ratio [9,10] 
and their plane strain effective values. Tab.2 shows the 
silicon surface elastic constants [5] and Lame’ constants 
where μ0=s11/2, λ0=s12. Obviously, if the surface stresses are 
neglected, then μ0=λ0=τ0=0. 
 

Tab.1The elastic constants and plane strain effective constants  

Ef vf Es vs fE  fv sE  

130GPa 0.28 1.8MPa 0.48 141GPa 0.389 2.34MPa 

 
Tab.2 Silicon surface elastic constants and Lame’ constants (N/m) 

s11=s22 s12 τ01=τ02=τ0 λ0 μ0 
-12.190 -1.3181 0 -1.318 -6.095 

 

3.2 Influence of surface effects 
Now two models are discussed. One is the classical 

model with the buckling features (36); the other is the 
model considering surface stress and surface balance 
where the buckling features can be solved by substituting 
the material parameters into (34). In the following text, the 
superscript I and II present these two models respectively. 

Fig.3 shows the relation between the ratio of equilibrium 
wave number II I

eq eq/k k in two models and film thickness h. 

Under the influence of surface effects, equilibrium wave 
number increase. When the film thickness is less than 5nm, 
such influence becomes significant. With the reduction of 
film thickness, this influence still increase. 

Fig.4 shows the relation between the ratio of the critical 
prestrain II I

cr cr/  and film thickness h. Under the influence of 

surface effects, critical prestrain decrease, but the influence 
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is slight. Fig.5 shows the relation between the ratio of critical 
general membrane force II I

cr cr/N N and film thickness h. 

Because of surface effects, critical general membrane force 
decrease. When the film thickness is less than 5nm, such 
influence becomes significant. With the reduction of film 
thickness, this influence still increase. 

 

Fig.3 The ratio of equilibrium wave number in two models 

 
Fig.4 The ratio of critical prestrain in two models 

 
Fig.5 The ratio of critical general membrane force in two models 

 
Fig.6 The ratio of equilibrium amplitude in two models  

Fig.6 shows the relation between the ratio of equilibrium 
amplitude II I

eq eq/A A and film thickness h under several 

prestrains: 0
11 0.001   , 0

11 0.01   and 0
11 0.1   . Under the 

influence of surface effects, equilibrium amplitude decrease. 
When the film thickness is less than 5nm, such influence 
becomes significant. With the reduction of film thickness, 
this influence still increase. 

 

4. Conclusion 
The governing equations about the buckling of a stiff thin 

film on a compliant substrate including surface effects are 
(37) and (38), whose real roots are equilibrium wave 
number keq and equilibrium amplitude Aeq. For the silicon film 
and PDMS substrate, when the film thickness is less than 
5nm, surface effects have significant influence on the 
equilibrium wave number, amplitude and critical membrane 
force. With the reduction of film thickness, this influence still 
increase. In other words, surface effects cannot be 
neglected for such nano system. 
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