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Abstract. Photovoltaic Power Plants (PVPP) are classified as a power energy sources with non-stabile supply of electric energy. It is necessary to 
back up power energy from PVPP for stabile electric network operation. We can set an optimal value of back up power energy with using variety of 
prediction models and methods for PVPP Power output prediction. Fuzzy classifiers and fuzzy rules can be informally defined as tools that use fuzzy 
sets or fuzzy logic for their operations. In this paper, we use genetic programming to evolve a fuzzy classifier in the form of a fuzzy search 
expression to predict PVPP Power output. 
 
Streszczenie. Opisano różne metody przewidywania możliwości system fotowoltaicznego. Jedną z metod jest logika rozmyta – fuzzy logic. Opisano 
programowanie genetyczne do tworzenia rozmytego klasyfikatora. (Przewidywanie mocy wyjściowej systemu fotowoltaicznego z 
wykorzystaniem logiki rozmytej) 
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Introduction 
 Owing to energy legislation regulating business in the 
Czech Republic due to which electricity redemption prices 
are high and disproportional to those in neighbouring 
countries, the number of requests to connect wind and 
photovoltaic power plants into the distribution networks has 
increased immensely. The enormous growth of the installed 
capacity of wind (WPP) and photovoltaic power plants (PV) 
in recent years has had an adverse impact on the electricity 
supply system in the Czech Republic and other EU 
countries as well. 
 This situation, after adopting respective measures and 
an act at the end of 2010, has attenuated and the increase 
in new plant construction in 2011 has slowed down. The 
installed capacity of photovoltaic power plants was 1,958.38 
MW (approx. 8% of the installed capacity of the electric 
supply system of the Czech Republic) as of 1 March 2011. 
After 2011 there is no significant increase of total installed 
capacity of RES because of reduction of PV system 
financial support by Czech government. 
 However, the operation of the plants installed by the end 
of 2010 will continue to have an adverse impact on the 
operation of the distribution networks in the years to come 
as well. Besides the negative impacts on voltage quality 
such as the increased values of harmonic voltage, total 
harmonic distortion or flicker perception rate that are largely 
caused by using semiconductor technology the photovoltaic 
power plants have an adverse impact on the electric supply 
system through power supply instability caused by the 
variability of weather conditions in installation sites. These 
are the sources with large variability of supplied power. 
The power supplied by a photovoltaic power station is 
changing very dynamically as a result of the changes in 
solar radiation intensity. To eliminate such rapid changes in 
the volume of supplies of power or complete shutdown of 
these generation units, a regulation system is used by the 
network operator for securing stable operation of the 
network. For the regulation it is necessary to use power that 
is allocated in power plants and that serves just for the 
regulation purposes. The size of the regulation output 
needed depends on the output size of operated power 
plants. As the power supply from unstable renewable 
sources changes over time, the calculation of the size of 
needed regulation output is relatively complex because the 
change of supplied power from photovoltaic power plants 
takes a matter of just minutes. This calculation is based on 
planning power supplies from all sources connected to the 

electricity supply system, thus also from photovoltaic power 
plants. As the supply from these sources is unstable, 
monitoring photovoltaic plants operation is important for 
planning the size of reserves but the key is mainly the 
possibility to forecast the power generation from these 
sources for certain time intervals of future operation, for 
instance for intervals of 12, 24 or 36 hours. Currently 
predicting for longer intervals has not had greater 
importance due to the errors that we make in predicting as 
a result of the large variability of the factors used for the 
prediction. 
 Nowadays a number of mathematical methods are used 
for predicting electricity generation from such unstable 
sources. These methods are based on employing e.g. 
meteorological models, time series, neural networks, 
statistical methods or fuzzy logic. 
 The models that are commonly used predict solar 
radiation energy, which is basically the same as for 
predicting electric power generation. This happens in a 
couple of steps or by combining several of the above 
methods. As an example, the most common procedure 
shown in [7] can be mentioned, where predicting is divided 
into two consecutive steps. 
 In the first stage solar energy is normalized using the 
model for a so-called clear sky with the aim of creating a 
stable time line. Whereas the standard methods of linear 
time lines for predicting solar radiation or generated electric 
power can be employed subsequently. 
 At this stage, the quality of the clear sky model is quite 
crucial. This model is used for dividing solar radiation into 
the direct and diffusion radiation as the ratio of individual 
solar radiation components changes depending on the 
amount of clouds. In the case of a completely clear sky the 
solar radiation contains a high share of direct radiation, and 
vice versa when the sky is overcast - the share of direct 
radiation is minimal and diffusion radiation prevails. The 
share of individual radiation components is connected with 
the type of the panels that are used in the photovoltaic 
power plant as each generation of photovoltaic panels can 
absorb a different solar radiation component. 
Monocrystalline panels absorb just the direct component of 
solar radiation, while polycrystalline panels are able to 
absorb both components, both the direct and the diffusion 
component. 
 In the second stage neural networks, genetic algorithms 
or fuzzy logic are used, with the possibility of large input 
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variability of these models for the direct prediction of solar 
radiation energy or generated electric power. 
 The model presented in this article makes use of the 
possibilities of genetic programming that is applied for 
finding the fuzzy classifier by means of which the prediction 
is made. 
 
Genetic programming for power output prediction 
 Genetic programming is a powerful machine learning 
technique from the wide family of evolutionary algorithms. In 
contrast to other evolutionary algorithms, it can be used to 
evolve complex hierarchical tree-like structures and 
symbolic expressions. 
 In this work, we use genetic programming to evolve 
fuzzy classifiers for a photovoltaic plant power output 
prediction. In particular, genetic programming is employed 
to evolve a symbolic fuzzy classifier that is used to estimate 
photovoltaic plant power output from current values of 
attributes read from various sensors (e.g. light intensity 
sensors, wind speed sensors etc.). 
 The fuzzy classifier can be seen as a special type of 
decision tree. In contrast to traditional decision trees, it 
takes inspiration from fuzzy information retrieval. The fuzzy 
classifier used in this work uses both, operators and 
evaluation functions that are commonly utilized in fuzzy 
information retrieval. 
 Genetic programming is a supervised machine learning 
algorithm that can generate the classifiers from a training 
data set. Such a fuzzy classifier can be subsequently used 
for efficient and fast prediction of a values of an output 
variable, for prediction of product quality, for classification of 
data samples, and generally to assign labels to data. 
Importantly, the output of the classifier is a real value, i.e. it 
can be used to estimate course of a real valued function. 
For convenience, we will call the predictor “a classifier” in 
the remainder of the text. 
 Artificial evolution of fuzzy classifiers is a promising 
approach to data mining because genetic programming has 
proven very good ability to find symbolic expressions in 
various application domains. The general process of 
classifier evolution can be used to evolve classifiers for 
different data classes and data sets with different 
properties. The resulting classifiers can be used as 
standalone data labeling tools or participate in collective 
decision in an ensemble of data classification methods. 
 
Genetic programming 
 Genetic programming (GP) is an extension to genetic 
algorithms, allowing work with hierarchical, often tree-like, 
chromosomes with an unlimited length [1, 2]. The GP 
shares the workflow with genetic algorithms (see Figure 1). 
It iteratively evolves a population of encoded candidate 
solutions (chromosomes) that are modified by so called 
genetic operators so that the goodness of the solutions 
improves. 
 GP was introduced as a tool to evolve whole computer 
programs and represented a step towards adaptable 
computers that could solve problems without being 
programmed explicitly [1, 3]. 
 In GP the chromosomes take the form of hierarchical 
variably-sized expressions, point-labeled structure trees. 
The trees are constructed from nodes of two types, 
terminals and functions. More formally, a GP chromosome 
is a symbolic expression created from terminals t from the 
set of all terminals T and functions f from the set of all 
functions F satisfying the recursive definition [3]: 

1.  t  T : t is the correct expression 
2.  f  F : f (e1, e2, …, en) is the correct expression if f  

F and e1, …, en are correct expressions.  

3.  there are no other correct expressions 
 
 GP chromosomes are evaluated by the recursive 
execution of instructions corresponding to tree nodes [3]. 
Terminal nodes are evaluated directly (e.g. by reading an 
input variable) and functions are evaluated after left-to-right 
depth-first evaluation of their parameters. 
 

 
Genetic operators are applied to the nodes in the tree-
shaped chromosomes. A crossover operator is 
implemented as the mutual exchange of randomly selected 
sub-trees of the parent chromosomes. 
 Mutation has to modify the chromosomes by pseudo-
random arbitrary changes in order to prevent premature 
convergence and broaden the coverage of the fitness 
landscape. Mutation could be implemented as: 

1. removal of a sub-tree at a randomly chosen node 
2. replacement of a randomly chosen node by a newly 

generated sub-tree 
3. replacement of node instruction by a compatible node 

instruction (i.e. a terminal can be replaced by another   
terminal, a function can be replaced by another 
function of the same parity) 

4. a combination of the above 
 
Fuzzy classifier evolution by genetic programming 
 We use an algorithm for fuzzy classifier evolution 
inspired by the principles of fuzzy information retrieval and 
evolutionary optimization of search queries [4]. 
 The fuzzy classifier takes form of a symbolic expression 
with data features (data set attributes) as terminals and 
operators as non-terminal nodes. Both terminals and non-
terminals are weighted. An example of the fuzzy classifier is 
shown in Figure 2. 

 
 Fuzzy classifier is evaluated for each data sample in the 
training collection. For each terminal, the value of 
corresponding feature is taken. The operators are 
implemented with the help of standard fuzzy set operators, 
i.e. x and y is implemented as min(x,y), x or y is implemented 
as max(x,y), and not x is implemented as 1 - x. The standard 
implementation of fuzzy set operators was used but any 

1. Define objective function 
2. Encode initial population of possible solutions as fixed-

length binary strings and evaluate chromosomes in 
initial population using objective function 

3.  Create new population (evolutionary search for better 
solutions): 
a.  Select suitable chromosomes for reproduction 

(parents) 
b. Apply crossover operator to parents with respect to 

crossover probability to produce new chromosomes 
(offspring) 

c. Apply mutation operator to offspring chromosomes 
with respect to mutation probability. Add newly 
constituted chromosomes to new population 

d. Until the size of new population is smaller than size 
of current population go back to a. 

e. Replace current population by new population 
4. Evaluate current population using objective function 
5. Check termination criteria; if not satisfied go back to III. 

 
Fig.1. Genetic algorithms workflow 

 
Fig.2. An example of fuzzy classifier feature1:0.269 or:0.911
feature2:0.0861 
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other pair of t-norm and t-conorm or Ordered Weighted 
Averaging (OWA) operators could be used. 
 Classifier weights are used to smoothen the influence of 
classifier operators and to blur the meaning the data 
features. Its use allows forming rich and flexible 
classification statements. There are many ways to interpret 
and subsequently compute the classifier weights. In this 
work, the classifier weights are interpreted as threshold 
(e.g. data samples with feature values greater than the 
corresponding classifier weight are awarded by greater 
value) [5]: 
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where P(a) and Q(a) are coefficients used for tuning the 
threshold curve. P(a) and Q(a) used in our implementation 
are P(a) = (1+a)/2 and Q(a) = (1-a2)/4. The other symbols in 
(1) are: t represents a feature in the data set, d is a data 
sample, F(d,t) is the value of feature t in data sample d, a is 
the weight of feature t in the classifier. 
 The evaluation of a classifier over the training data set 
assigns to each data record real value from the interval [0;1] 
which can be interpreted as membership degree of the data 
record in a fuzzy set defined by the classifier. The fitness 
value of the classifier is then evaluated using the 
information retrieval measure F-score F: 
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which is a scalar combination of precision P and recall R. 
Precision and recall are for two fuzzy sets (pattern A and 
classifier C) computed using -count: 
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Experiments 
 The genetic programming was used to evolve a fuzzy 
rule to estimate the power output of a photovoltaic power 
plant. We have implemented the genetic programming for 
fuzzy rule evolution according to the principles outlined 
above and used it to evolve a classifier that estimates the 
output power based on the sensor readings. In particular, 
the genetic programming generated a random set of 
candidate classifiers. The classifiers had random structure 
and random weights assigned to the nodes. In the course of 
the evolution, both the classifier structure and weight values 
were modified using the genetic operators. 
 A data set from a real photovoltaic power plant was 
used to evolve the classifier. The data set contained 24030 
records containing values from 2 light intensity sensors and 
1 wind sensor. Each record also contained the power output 
of the plant at given moment. All rows in the data matrix 
were normalized into the interval [0,1]. 
 Even though the data set contains only three features, 
the genetic programming is a good way to seek for the 
dependencies between input data and output value. The 
algorithm can generate a classifier with complex structure 
that might contain the same features many times, perhaps 
with different weights. Moreover, it can discover the way the 

features need to be combined in order to get good estimate 
of the output value. 
 The data set was divided into a training and testing 
collection. The training and testing collections contained 
14416 and 9612 records respectively.  

 
 The training collection was used for classifier evolution 
and the testing collection was used for the evaluation of the 
evolved classifier. An example of the real and estimated 
power output for first 1000 training records is shown in 
Figure 3 and an example of real and estimated power for 
first 1000 testing records is shown in Figure 4. 

 
 We can see that the estimated power output 
corresponds with real power output quite well. The average 
estimation error for training collection was 0.011 and the 
average estimation error for testing collection was 0.007. 
We also note that the data contained some noise (see e.g. 
the outlying real power output value in Figure 4). The noise 
affects both, the training and evaluation. 
 The best classifier found by the algorithm was 
Feature0:0.121322. and several slightly worse classifiers 
contained only one sensor value as well. It means that the 
algorithm has repeatedly chosen just one of the light 
sensors as the most influential input for power output 
estimation. 
 
Conclusions 
 Predicting electric power generation is a highly hot topic 
considering the situation that arose in the Czech Republic 
as a result of the inappropriately chosen redemption prices 
of electric power generated in photovoltaic power plants. 
This legislation has led to large-scale construction of 
photovoltaic power plants. By the beginning of 2009 only 

 
Fig.3. Real and estimated power output for first 1000 training 
records 

 
Fig.4. Real and estimated power output for first 1000 testing 
records 
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65.74 MWp were installed, throughout 2009 another 
approx. 400 MWp were installed, and in the course of 2010 
the installed capacity of photovoltaic power plants reached 
the output of 1952 MWp. Such a volume of installed 
capacity within the electric supply system of the Czech 
Republic can cause problems in managing the system in 
situations when relatively rapid changes in power supply 
from these unstable sources occur. 
 One of the possible solutions to this situation is the 
development and optimisation of the prediction model, 
which will be able to predict, for the defined time interval of 
12, 24 or 36 hours, the volume of electric power that will 
probably be generated from photovoltaic power plants and 
thus will enable the distribution system operators to allocate 
a sufficient amount of regulation power in standard power 
plants that can participate in regulating the electric supply 
system. 
 The precise determination of allocated output has not 
only technical importance but also economic importance 
because possible reduction of allocated output size leads to 
reducing regulation costs.   
  This paper presents a soft computing method for search 
for an efficient fuzzy classifier to predict power output of a 
photovoltaic power plant. The algorithm uses genetic 
programming and builds on the principles of fuzzy 
information retrieval. An experimental evaluation has shown 
that the classifiers found by the algorithm provide 
reasonable estimate of the photovoltaic plant output power. 
The results obtained by fuzzy classifier evolution are 
encouraging. The generic algorithm can be tuned for this 
application domain and in the future, more soft computing 
methods for power output estimation can be investigated. 
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