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Dynamic Model of a Space Vector 
Modulated Buck-Boost Matrix-Reactance Frequency Converter 

 
 

Streszczenie. Elementy pasywne w układzie Matrycowo-Reaktancyjnego Przemiennika Częstotliwości mają duży wpływ na jego parametry przy 
zmiennych wartościach zasilania lub obciążenia. Artykuł ten przedstawia dynamiczny model matematyczny Matrycowo-Reaktancyjnego 
Przemiennika Częstotliwości przy modulacji wektora przestrzennego napięcia wyjściowego (SVM). Metoda uśrednionych zmiennych stanu oraz 
dwuczęstotliwościowe przekształcenie d-q jest wykorzystane do opisu właściwości przekształtnika przy dynamicznych zmianach jego parametrów. 
Model dynamiczny Matrycowo-Reaktancyjnego Przemiennika Częstotliwości. 
  
Abstract. The determination of the converter passive elements for various load and power grid conditions is of great importance to the proper 
operation of matrix-reactance frequency converters. This paper presents a novel dynamic model of a Matrix-Reactance Frequency Converter that 
utilizes a Space Vector Modulation (SVM) switching method. In this paper the average-state space method and the two-frequency d-q transformation 
are proposed as aids in the process of fast verification of the matrix-reactance frequency converter operation under specific dynamic conditions.  
 
Słowa kluczowe: Model matematyczny, Matrycowo-reaktancyjne przemienniki częstotliwości, Modulacja wektora przestrzennego. 
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Introduction 

The past few years have witnessed remarkable 
progress in research into direct power AC-AC frequency 
converters without a DC energy storage element [1]-[5]. The 
most common is the matrix converter (MC) [5], [6]. The 
major problem with frequency conversion without DC 
energy storage is the voltage transfer ratio - is less than 
one. In order to obtain a voltage gain greater than one, 
hybrid solutions have been proposed [1], [3]. Another group 
of AC-AC frequency converters with a buck-boost voltage 
transformation possibility and without DC energy storage 
are proposed in [2] and are called matrix-reactance 
frequency converters (MRFC). These topologies are based 
on the idea of connecting all of the unipolar PWM AC 
matrix-reactance choppers (MRC) with a direct matrix 
converter [7]. This approach makes it possible to obtain a 
load output voltage much greater than the source voltage. 
The family of MRFCs contains two topologies based on 
buck-boost, Ćuk, SEPIC and Zeta MRC and one topology 
based on the boost MRC. A similarly conception as that in 
[2] was proposed in [4]. The presented topology is a 
cascade connection of the AC MRC with buck-boost 
topology and a direct MC. It should be noted that in both 
MRFC solutions the electrical energy stored in the 
reactance elements during the period of input or output 
frequency is equal to zero, which is an essential difference 
in comparison to hybrid MCs.  

The analysis and modelling of MRFC presents 
significant challenges, due to their discontinuous switching 
behaviour. Furthermore, given the increasing number of 
different modulation strategies, it is necessary to study their 
impact in converter dynamic operation. Previous papers 
have presented mathematical models of MRFCs with 
Venturini modulation [2], [8], [9]. This modulation is very 
simply and based on a low frequency modulation matrix. 
The SVM approach is based on the instantaneous space-
vector representation of input and output voltages and 
currents [6]. The implementation of SVM into a MRFC 
control is presented in [10], [11]. The modulation waveforms 
in SVM are not given directly as in Venturini modulation, 
and depend on sectors which are located vectors of input 
current and output voltages. A second difficulty is the 
distortion of output line voltages [6], [15]. The output phase 
voltage measurements to point “N” are distorted but the 
line-to-line output voltages have sinusoidal shapes. 

The main aim of this paper is to present mathematical 
dynamic models of the selected topologies of MRFCs with 

space vector modulation. One well-known approach to the 
modelling of PWM systems is to approximate their 
operation by averaging techniques [12]. The generalized 
averaging method is based on the fact that the waveforms 
can be approximated using a defined time interval. This 
interval in a MRFC is determined by a switching sequence 
period TSeq. Initially, the average-state space method was 
widely used for DC-DC converter modelling. Then it was 
applied to other types of power converters: AC-DC, AC-DC-
AC and AC-AC [12]-[13]. The analyzed circuit of the MRFC 
is modelled using the average-state space method. There 
are several analytical methods for obtaining averaged 
models. The modelling technique presented in this paper is 
based on solving mathematical differential equations [2], [9]. 
 
Analyzed matrix-reactance frequency converter 

The MRFC based on MRC with buck-boost topology 
(MRFC-I-buck-boost), shown in Fig. 1, will be analyzed in 
this paper [2], [8]-[11].  
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Fig. 1. Topology of Matrix-Reactance Frequency Converter based 
on matrix reactance chopper with buck-boost topology 
 

 
Fig. 2. General form of the control strategy 

 

The descriptions, in general form, of the control 
strategies of the discussed MRFCs are shown in Fig. 2. In 
each switching cycle TSeq, in the interval tS, the matrix 
connected switch sets are in the process of switching with 
selected switching modulation, while the load synchronous 
connected switch sets are turned-off. In contrast, in the time 
period tL all of the matrix connected switch sets are turned-
off and the load switches are turned-on. The time interval tL 
has an influence on the amplitude of load voltages. The 
state of the converter switches can be represented by 
means of the so-called transfer matrix T:  

TSeq 

Next 
Sequence  

tL tS 

sjK=0 (off) & sL=1 (on) sjK=1 (SVM off/on) & sL=0 (off) 
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 The SVM technique is based on the instantaneous 
space vector representation of input and output voltages 
and currents. The output voltages and input currents of 
matrix connected switches in the presented MRFC can be 
expressed in its space phasor form as [6], [11]: 
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where: αo are the phase angles of the output voltage vector, 
βi are the phase angles of the input current vector. The 
allowed switching configuration of matrix connected 
switches in the SVM algorithm are shown in Table I. 
 
Table. 1. Switching configuration in the SVM algorithm 

Switching 
Config. 

a b c uab, ubc, uca iA, iB, iC uLMC αo iSMC βi 

0A A A A 0      0      0 0  0  0 - 0 0 - 

0B B B B 0      0      0 0  0  0 - 0 0 - 

0C C C C 0      0      0 0  0  0 - 0 0 - 

+1 A B B uAB    0  -uAB ia  -ia  0 2/3uAB 0 2/√3ia -π/6

-1 B A A -uAB   0   uAB -ia  ia  0-2/3 uAB 0 -2/√3ia -π/6

+2 B C C uBC   0  -uBC 0  ia  -ia 2/3uBC 0 2/√3ia π/2

-2 C B B -uBC  0   uBC 0  -ia  ia-2/3 uBC 0 -2/√3ia π/2

+3 C A A uCA   0  -uCA -ia  0  ia 2/3uCA 0 2/√3ia 7π/6

-3 A C C -uCA  0   uCA ia  0  -ia-2/3 uCA 0 -2/√3ia7π/6

+4 B A B -uAB   uAB   0 ib -ib  0 2/3uAB 2π/3 2/√3ib -π/6

-4 A B A uAB   -uAB   0 -ib  ib  0 -2/3uAB 2π/3-2/√3ib -π/6

+5 C B C -uBC  uBC   0 0  ib  -ib 2/3uBC 2π/3 2/√3ib π/2

-5 B C B uBC  -uBC   0 0  -ib  ib -2/3uBC 2π/3-2/√3ib π/2

+6 A C A -uCA  uCA   0 -ib  0  ib 2/3uCA 2π/3 2/√3ib 7π/6

-6 C A C uCA   -uCA   0 ib  0  -ib -2/3uCA 2π/3-2/√3ib7π/6

+7 B B A 0   -uAB   uAB ic  0  -ic 2/3uAB 4π/3 2/√3ic -π/6

-7 A A B 0    uAB  -uAB 0  ic  -ic -2/3uAB 4π/3-2/√3ic -π/6

+8 C C B 0  -uBC   uBC -ic  ic  0 2/3uBC 4π/3 2/√3ic π/2

-8 B B C 0  uBC   -uBC -ic  0  ic -2/3uBC 4π/3-2/√3ic π/2

+9 A A C 0  -uCA   uCA 0  -ic  ic 2/3uCA 4π/3 2/√3ic 7π/6

-9 C C A 0   uCA  -uCA ic  -ic  0 -2/3uCA 4π/3-2/√3ic7π/6
 
 In Fig. 3 the output voltage and input current vectors 
corresponding to the 18 active configurations are shown. 
The complex space vector plane is divided into six sectors 
SO for output voltages and six sectors Si for source current. 
The reference output voltage and source current space-
vectors are constructed by selecting four nonzero 
configurations (active vectors), applied to suitable time 
intervals within the switching sequence period TSeq, as is 
determined by the equation (5)-(7), [6], [11]: 

(5)                 uO = dIuI +dIIuII +dIIIuIII +dIVuIV, 

(6) 
Seq

k
k T

t
d  , k= I, II, II, IV,          (7) d0 = 1−dI −dII −dIII –dIV, 

where uI, uII, uIII and uIV are the output voltage vectors 
corresponding to the four selected configurations, and dI, 

dII, dIII, and dIV are their duty cycles. The zero configurations 
are applied to complete time interval TSeq. 
 Taking into account the switching time tL of load 
switches (SL1, SL2, SL3), and defining the sequence pulse 
duty factor DS=tS/TSeq, the required modulation duty cycles 
for the switching configurations I, II, III, IV for MRFC from 
Fig. 1 are given by equations (8) - (11): 
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where φi is the input phase displacement angle, αO and βi 
are the angles of the output voltage and input current 
vectors measured from the bisecting line of the 
corresponding sectors, and are limited as follows: 

(12)   66 0   ,           66   i . 

       a)                                                 b) 

 
Fig. 3. Graphical interpretation of: a) sectors of the output voltage 
vectors, b) sectors of the input line current vectors 
 
Modelling theory of MRFC 
 An average state-space model of MRFC is obtained 
when the following assumptions apply: - all the switches are 
ideal (the voltage drop across the diode when forward 
biased is zero, and there are no commutation losses in the 
transistor nor in the diode); - inductors and capacitors are 
linear; - converter and sources are symmetrical and 
balanced. 
The local average of function d(t) is defined as [13]:  
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td
t
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, 

where: d(t) is the continuous duty factor. For the next 
sequence periods TSeq becomes d(kTSeq)=dk(t), where dk(t) is 
the actual duty factor in the k-th cycle. If function d(t) is 
periodic with period TSeq, then d(t)=D where D is the steady-
state duty ratio [13]. The general form of the average state 
space equations is described by (14) [12]. 

(14)                           dd
dt

d
BxA

x
 , 

where: x  is the vector of the averaged state variables, A(d) 
and B(d) are the averaged state matrix and averaged input 
matrix respectively. The state-space averaging method is 
based on analytical manipulations using the different 
converter state representations [12]. This modelling 
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technique consists in determining, firstly, the linear state 
model for each possible configuration of the circuit and, 
then, to combine all these elementary models into a single 
and unified one through a dk duty factor.  

(15)                            tt
dt

d
kk BxA

x
 , 

where: x are the vectors of the state variables; Ak(t) and 
Bk(t) are the state matrix and input matrix for k-th switch 
configuration respectively. The average state space 
equations for a MRFC can be represented by: 
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The weight coefficient dk is the degree of occurrence of 
all the possible configurations, and depends on the switch 
control strategy. Equations (16) - (19) define the general 
form of the mathematical average state space model for 
MRFCs for various control strategies. 
 The model defined by equations (16) - (19) is time-
varying model in state-space form, because the pulse duty 
factors dk for MRFCs is a time variable [9]. A reduced time-
invariant model of the MRFC can be found by expressing 
equations (16) in the d-q rotating frame using the two 
frequency transformation matrix: 
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where: KS and KL are the d-q transformation matrices 
defined for pulsation of the supply and load voltages, ω and 
ωL respectively. Furthermore, assuming that the converter 
circuit is symmetrical and taking into consideration 
substitution (21) to (16) we obtain stationary time-invariant 
set equation (22) with new state variables [2], [9]: 

(21)       KYx  ,                    (22)      BYΩA
Y


dt

d
, 

A detailed matrix description for equations (22) is 
presented in reference [2]. The solution of the equation (22) 
is described by (23) [2]. 

(23)              BIΩAKYKx ΩAΩA   tt ee 1

0 , 

where: Y0 – vector of the initial values of transformed 
variables, I – unit matrix. Equation (23) described 
a dynamic model of MRFC for different modulation. 
 
Modelling of MRFC with SVM 
 Modelling process for MRFCs with SVM is based on the 
relationships described in Section III. Description of 
averaged state equations is connected with the calculation 
of averaged pulse duty factor for each switch SjK, which is 
dependent on the SVM. Then, relationships between 
averaged values of voltages are described by (24). 
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For example, in the sectors Si = 1 and SO = 1, the space 
vectors of voltages and currents are synthesized using the 
switch configurations +9, -7, -3, +1, which are defined in 
Tab. I. For the sequence: 1379   matrix 
switches are switched-on successively by a relative time: 

(25)               IVIIIIII dddd  . 

Then, the transformation matrix D is determined as follows: 

(26)            IVIIIIII dddd 1379   DDDDD , 

where: 
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Finally, the matrix D has the form (28). 
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 In the averaged mathematical model of the MRPC with 
SVM voltage uNn (Fig. 1) should be considered in the 
equations and is described by expressions (29) [10]. 
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Taking into account the equation (24) finally yields: 
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Taking into account the equations (24) - (30) yields the final 
form of the averaged state space model (16) of the 
converter shown in Fig. 1 with SVM described by (31). 
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Validation of MRFC dynamic model 
 Two different models of the system in Fig. 1 are 
developed and analysed in the Matlab Simulink software 
environment. In one model the MRFC is represented by 
equations (22) and (31), and is referred to as the averaged 
model. In the second model (simulation model), the MRFC 
is represented by ideal switches and referred to as the 
exact model. The parameters used in both models are the 
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same (Tab. II). It should be noted that distortions due to 
switching phenomena and its associated harmonics are 
generally observable in the waveforms obtained from the 
simulation model. The switching distortion is not present in 
the averaged model. To provide a meaningful comparison 
of the exact model and the average model, the 
corresponding time waveforms obtained from both models 
are juxtaposed in one graph. As an example, let us apply 
the obtained averaged model to modelling MRFCs in a step 
change of the DS in time t0. The transient responses of 
source current and load voltage at a step change of the DS 
from 0.5 to 0.7, for fL=25Hz, are presented in Fig. 4. The 
obtained results confirm that averaged models can be 
useful for transient response analysis of the described 
MRFC. The waveforms in Fig. 4 confirm the good dynamic 
properties of such a converter. The converter transient 
response is relatively short. The transient period is 
approximately equal to 0.25 times the supply period. Fig. 5 
shows the system responses to the changes of fL from 50 to 
20 Hz. The corresponding results from both models agree 
very well with and validate the accuracy of the averaged 
model versus the exact model. The calculation and 
simulation test results demonstrate good correlation. 
 

 
Fig. 4. Transient responses of input current and output voltage at 
step change of DS from 0.5 to 0.75, fL=25Hz 
 

 
Fig. 5. Transient responses of input current and output voltage at 
step change of fL from 50 to 20 Hz, DS=0.6 
 
Tab. 2. Calculation and simulation test circuit parameters 

Parameter Symbol Calc./Simul. 
Supply voltage 
frequency  
Inductances 
Capacitances 
 
Load  

US / f 
LF1 - LF3 
LL1 - LL3  
CF1 - CF3 
CL1 - CL3 
RL1 – RL3 

230 V/ 50 Hz 
1.5 mH 
1.5 mH 
10 μF 
10 μF 
60 Ω 

 
Conclusion 
 Due to the fact that MRFCs are novel converters, before 
experimental verification it is necessary to examine their 

basic properties especially in dynamic conditions. The 
obtained models are a key tool in the study of low dynamic 
behaviour. In this paper, the theoretical test results have 
been compared with the results obtained by simulation. 
Based on the obtained results it can be concluded that 
MRFC have good dynamic properties. 
 The modelling approach based on the averaged state 
space method presented in this paper is relatively simple 
and requires only a small number of mathematical 
transformations. Comparative studies of the theoretical 
results and the results of simulation investigations have 
demonstrated the usefulness and accuracy of the obtained 
mathematical models.  
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