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Abstract. An extended CPHD (Cardinalised Probability Hypothesis Density) filter for combining multi-target tracking with sensor alignment is 
proposed. The augmented state is established by appending the sensor biases to the single-target state. The cardinality distribution of the targets 
and the intensity of the augmented state are propagated by employing Gaussian mixtures. The target states and the sensor biases are jointly 
estimated. Simulation results show that the proposed filter successfully achieves the sensor alignment and outperforms the standard CPHD filter. 
 
Streszczenie: Zaproponowano rozszerzony filtr CPHD do połączenia śledzenia wielu celów z wyrównaniem czujników.  Wyrażenia dotyczące 
pojedynczego celu rozszerzono przez dodanie offsetu czujnika. Moc (kardynalność) rozkładu celów i intensywność rozszerzonego wyrażenia są 
zrealizowane przez zastosowanie przekształceń Gaussa. Przeprowadzono jednoczesna estymację wyrażeń celu i offsetu czujnika. Wyniki symulacji 
wykazują, że proponowane rozwiązanie satysfakcjonująco dokonuje wyrównania czujników i wyjściowych parametrów standardowego filtru CPHD. 
Rozszerzony filtr CPHD do połączenia śledzenia wielu celów z wyrównaniem czujnika 
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Introduction 

Sensor alignment involving the estimation and 
correction of sensor biases plays a key role in multi-sensor 
tracking system. Most of the published methods of handling 
this problem, including two-stage estimation filter [1], 
maximum likelihood [2] etc., are only applicable when we 
know the association between the targets and the 
measurements. However, this association is usually 
unknown in the multi-target tracking (MTT) problem. 
Therefore it becomes a challenging problem to jointly 
achieve sensor alignment and MTT. The probability 
hypothesis density (PHD) filter [3, 4] has distinct advantage 
for MTT problem since it operates only on the single-target 
space and avoids the sophisticated data association. 
Hence, it provides an opportunity for us to combine the MTT 
with the sensor alignment. Lian et al. [5] have firstly 
considered the sensor alignment in the PHD filter. They 
proposed an extended PHD filter to jointly estimate the 
target states and sensor biases without data association. 
However, the PHD filter has the drawback that it has high 
variance in the estimates of the target number [6]. Mahler [7] 
proposed the cardinalised PHD (CPHD) filter to improve the 
accuracy of the target number estimations. To our based 
knowledge, combining MTT with sensor alignment based on 
CPHD approach has not been investigated.  

The key contribution of this paper is an extended CPHD 
filter which combines the MTT with the sensor alignment. 
This filter augments the sensor biases into the single-target 
state, and jointly propagates the cardinality distribution of 
targets and the intensity function of the augmented state. 
The implementation of this filter is derived by using 
Gaussian mixtures. A simulation example is presented to 
demonstrate the performance of the proposed filter. 
 

Augmented state model 
Suppose that there are L biased sensors synchronously 

observing multi-target. Let [ ]

[ ] [ ]
,1 ,

, , j
k

j j
k k M
z z  denote [ ]j

kM  

measurements received by the sensor j at time k. Each 
measurement is originated either from a target or clutter. If 

the measurement [ ]j
kz  is generated by the target with state 

xk, then 

(1)  [ ] [ ] [ ] [ ]( )j j j j
k k k k k= + +z h x b ε  

where [ ] ( )j
k kh x  is the true measurement as a function of 

target state xk, 
[ ]j
kb  is the bias vector, and [ ]j

kε  is the 

measurement noise vector whose covariance is denoted by 
[ ]j
kR . Let [1] [ ], , ( )

TT L T
k k k bcé ù= Îê úë ûb b b（ ）  denote the bias 

vector of L sensors taking values in a state space χb. We 
assume that the biases are independent and that the 
system dynamics of each bias is Markovian. Then, the 
transition density of bk can be written by 

(2)  [ ] [ ] [ ]
, | 1 1 , | 1 1

1

( | ) ( | )
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j j j
b k k k k b k k k k

j
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where [ ] [ ] [ ]
, | 1 1( | )j j j
b k k k kf - -b b  is the transition density of the bias 

of sensor j. 
The basic idea of extended CPHD filter is to augment 

the sensor biases into the single-target state. Define the 
augmented state space bc c c= ´ , where χ denotes the 

state space for single-target state, and ‘×’ denotes a 
Cartesian product. The augmented state defined on the 

augmented space is denoted by ( ) , ( )
TT T

k k k cé ù= Îê úë û x x b . 

Since the target state and sensor biases are independent, 
the transition density of augmented state can be written as 
(3)  | 1 1 1 , | 1 1
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( , | , ) ( | )
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k k k k k k x k k k k

b k k k k
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x b x b x x

b b                                     

 

where fx,k|k-1(xk|xk-1) denote the single-target transition density 
at time k given previous state xk-1. The survival probability of 
augmented state is determined by 
(4)  , ,( , ) ( )S k k k S k kp p=x b x  

where pS,k(xk) is the target survival probability given the 
target state xk. 

According to (1), the measurement of sensor j 
generated by the augmented state k

x  can be written as 

(5)  [ ] [ ] [ ]( , )j j j
k k k k= +z H x b ε  

where [ ] [ ] [ ]( , ) ( )j j j
k k k k k= +H x b h x b . 

Given the augmented state k
x , the detection probability of 

sensor j is determined by 

(6)  [ ] [ ]
, ,( , ) ( )j j

D k k k D k kp p=x b x  

where [ ]
, ( )j

D k kp x  is target detection probability of sensor j 

given the target state xk. 
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Recursion of extended CPHD filter 
By substituting the augmented state model into 

conventional CPHD recursion [6], we obtain the recursion of 
extended CPHD filter. This filter jointly propagates the 
posterior cardinality distribution pk and the posterior intensity 
vk for the augmented state which now includes the unknown 
biases of sensors. The recursion of this filter consists of the 
following prediction and update steps. 

Prediction step:  
Given the posterior intensity vk-1 and posterior cardinality 

distribution pk-1 at time k-1, the predicted cardinality 
distribution pk|k-1 and predicted intensity vk|k-1 can be 
calculated as 

(7)  | 1 ,
0

, 1 , 1
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where pΓ,k(•) is the cardinality distribution of births at time k, 

,   is the inner product defined between two real-valued 

functions α and β by , ( ) ( )da b a b= ò x x x  (or 

0

, ( ) ( )
l

l la b a b
¥

=

=å  when α and β are real sequences), 

and rk(x,b) is the intensity of target births given the 
augmented state at time k. 

Update step: 
Considering the multi-sensor case, we sequentially up-

date the predicted intensity vk|k-1 and predicted cardinality di-
stribution pk|k-1 using each sensor’ measurements at time k. 

Let [ ]
| 1
j
k kp -  and [ ]

| 1
j
k kv -  be the updated results of intensity 

function and cardinality distribution using the measurements 
of sensor j, 1, ,j L=  . Denote the cardinality of the set Z 

by |Z|. Set 
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| 1 | 1( ) ( )k k k kp n p n- -=  

(10) [0]
| 1 | 1( , ) ( , )k k k kv v- -=x b x b  

the update formulas for sensor j are 
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(13) 

[ ]min(| |, )
[ 1] [ ] [ ]
| 1

0

( )[ ] [ 1]
, | 1[ ] [ ]

,
[ 1]
| 1

[ 1] [ ]
| 1

[ , ]( ) (| | )!

! 1 ,
(| | )

( )! 1,

( ( , ))

j
kZ n

u j j j
k k k k k

i

n i uj j
D k k kj j

K k k nj
k k

j j
i k k k

v Z n Z i

n p v
p Z i

n i u v

e v Z

-
-

=

- +-
-

-
-

-
-

F = -

-
´ -

- -

´ W

å

  

  

 

(14) [ ] [ ] [ ] [ ] [ ]
, ,( , ) ( | , ) ( ) 1, ( )j j j j j
k k D k k kg p k kz x b z x b x zy =  

(15) { }[ 1] [ ] [ 1] [ ] [ ]
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[ ]j
kZ  is the set of meaurements received by sensor j at time 

k, [ ]
, ( )j

K kp   is the cardinality distribution of clutter 

measurements generated by sensor j at time k, ei(•) is the 

elementary symmetric function [6] of order i, [ ] ( )j
kk   is the 

intensity of clutter measurements of sensor j, and 
[ ] ( | , )j
kg  x b  is the single-target measurement likelihood of 

sensor j given the augmented state (x,b). 
After using the measurements of each sensor, the 

updated cardinality distribution pk and updated intensity vk at 
time k are determined by 

(16) [ ]
| 1( ) ( )L

k k kp n p n-=  

(17) [ ]
| 1( , ) ( , )L

k k kv v -=x b x b  

The number of targets can be estimated using the 
maximum a posteriori (MAP) estimator 

ˆ arg max ( )k kN p=  , and the estimates of target states 

ˆ,1 ,
ˆ ˆ{ , , }

k
k k N

x x  can be extracted by picking the ˆ
kN  largest 

local maxima of vk(x,b). Since the sensor biases are the 
same for all targets, the estimates of biases at time k can be 
derived by 

(18) ˆ ( , ) ( , )k k kv d d v d db b x b x b x b x b
 c c

= ò ò  

Implementation of extended CPHD filter 
Consider the following assumptions: 
Assumption 1. The system dynamics of single-target 

state and sensor biases follow Gaussian dynamical models. 
Then, the system dynamics of the augmented state also 

follows a Gaussian model. Let ( )k
 F  and 1k-

Q  denote the 

transition function and the covariance of process noise for 
the augmented state. 

Assumption 2. The measurement likelihood is a 
Gaussian density. 

Assumption 3. The survival and detection probabilities 
are state independent. 

Assumption 4. The birth intensity can be considered as 
a Gaussian mixture of the form 

(19) 
,
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where N(•; m, P) denotes a Gaussian density with mean m 

and covariance P, ( ) ( )
, ,( ; , )i i
r k r kN x m P  and ( ) ( )

, ,( ; , )i i
rb k rb kN b m P  

are corresponding to the target state and the sensor biases. 
Under these assumptions, the implementations of 

prediction and update steps of extended CPHD filter are 
shown below. 

Prediction step: 
At time k-1, the posterior density vk-1 and posterior 

cardinality distribution pk-1 are given, and vk-1 is a Gaussian 
mixture of the form 

(20) 
1
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According to (7), the predicted cardinality distribution pk|k-1 
becomes 
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Considering the nonlinearity of transition function ( ) F , we 

use the unscented transformation [8] with mean ( )
1
i
k-m  and 

covariance ( )
1
i
k-
P  to generate a set of sigma points and 

weights, denoted by ( )
1, , ,{ , , }, 1, ,i
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where M is the number of sigma points. Then, the sigma 
points are propagated through the transition function as 
follows 
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According to (8), the predicted intensity vk|k-1 can be 
approximated by a Gaussian mixture of the form 
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Update step: 
At time k, the predicted PHD vk|k-1 and predicted 

cardinality distribution pk|k-1 are given, and vk|k-1 is a 
Gaussian mixture of the form 
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The predicted intensity vk|k-1 and predicted cardinality 
distribution pk|k-1 are sequentially updated using each 
sensor’ measurements.  

Set 
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According to the recursion (12), the updated intensity 
[ ]

| 1 ( )j
k kv - x  using the measurements of sensor j is also a 

Gaussian mixture denoted by 
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Considering the nonlinearity of measurement function 
[ ] ( )j H , a set of sigma points and weights denoted by 
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The update formulae (corresponding to (11) and (12)) using 
measurements of sensor j become 
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We obtain the estimate of target number ˆ
kN  by using 

MAP estimator. The estimates of multi-target states and 
ˆ
kN  sensor biases ˆ,1 ,

ˆ ˆ{ , , }
k

k k N
b b  can be extracted by 

picking the means of ˆ
kN  Gaussian terms of posterior 

density vk with the largest weights ˆ,1 ,
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k
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determined by 
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Simulation results 
Consider a two-dimensional tracking scenario with four 

targets observed by three synchronous sensors as shown 
in Figure 1. These targets have various birth and death 
time. The state of each target is a vector of position and 

velocity [ , , , ]Tk k k k kx y x y=  x , and follows a linear 

Gaussian dynamical model given by 
(46) , | 1 1 1 1( | ) ( ; , )x k k k k k k k kf N- - - -=x x x F x Q  

where 
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In and 0n denote the n×n identity and zero matrices, Δt=1s is 
the sampling period, and σw=0.01m/s2 is the standard 
deviation of the process noise. The probability of target 
survival is fixed to PS,k=0.99. 

 
Fig.1. True target trajectories and sensor locations 
 

Sensor 1 located at (600,400)m generates range and 
bearing measurements. Sensor 2 located at (0,0)m 
generates range measurements. Sensor 3 located at (-
600,400)m generates bearing measurements. The 
measurement noise of these sensors is Gaussian white 
noise with the covariances 

[1] 2diag([12.5m,12.5mrad] )kR = , [2] 2[10m]kR =  and 
[3] 2[10mrad]kR = . For many real-world problems, the bias 

usually does not drift against time. The Gaussian dynamic 
model of biases bk is given by 

(48) 
3

[ ] [ ] [ ]
, | 1 1 1 , 1

1

( | ) ( ; , )j j j
b k k k k k k b k

j

f Nb b b b Q- - - -
=
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The means of [1]
kb , [2]

kb  and [3]
kb  are [50m,-50mrad], 30m 

and -40mrad. [1] 2
, 1 diag([0.025m,0.025mrad] )b kQ - = , 

[2] 2
, 1 [0.025m]b kQ - = , and [3] 2

, 1 [0.025mrad]b kQ - = . The 

detection probability of each sensor is 0.98. The clutter of 
each sensor is modeled as a Poisson random finite set with 
mean rate of 20 points per scan and uniform distribution 
over the surveillance region. 

Figure 2 shows the bias estimates at each time step in 
one trial. We can see that all the estimates of biases 
converge to the true biases as time progressing. 

          
Fig.2.Bias estimates in one trial Fig.3.Position estimates in one trial 
 

The estimates of target positions by standard CPHD 
(without sensor alignment) and extended CPHD filters in 
one trial are shown in Figure 3. It can be seen that the 
estimates of standard CPHD have noticeable deviation from 
the true tracks and several estimates are lost. On the other 
hand, the estimates of extended CPHD approximate the 
true tracks after several time steps. 

Figure 4 shows 100 (Monte Carlo) MC runs average of 
the estimated target number. During the most of the period, 
the target number estimates of standard CPHD filter are 
smaller than the true number, whereas the extended CPHD 
filter’ estimates are closed to the true number. It can be 
seen that the estimates of target number for extended 
CPHD filter does not immediately respond to the changes of 
target number. However, during the time intervals when the 
number of targets is steady, the extended CPHD filter gives 
unbiased estimation. The optimal sub-pattern assignment 
(OSPA) [9] metric is used for performance evaluation. 
Figure 5 shows 100 MC runs average of OSPA with 
parameters p=2 and c=100m on estimated position. It can 
be seen that the extended CPHD filter performs much 
better than standard CPHD filter. The OSPA of extended 
CPHD filter exhibits high peaks due to its delayed response 
to the changes of target number. 

             
Fig.4.100 MC runs average     Fig.5.100 MC runs average of OSPA 
of target number estimates 
 

Conclusions 
An extended CPHD filter for combining the MTT with the 

sensor alignment is proposed. This filter can jointly estimate 
the number and the states of the targets and the sensor 
biases. Simulation results show that the proposed filter 
successfully achieves on-line sensor alignment in the MTT 
problem and outperforms the standard CPHD filter in terms 
of the accuracy of the estimations for the target number and 
the target states. 
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