
56 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1b/2013

Mingqiang YIN, Shiqi LI

Huazhong University of Science & Technology

Dynamic load balancing strategy for sort-first parallel rendering

Abstract. Parallel rendering based on a PC cluster is an effective method to improve the performance and resolution of graphic system. In order to
achieve dynamic load balance among the render nodes, we propose a new load division scheme based on the load distribution map, which is built
according to the rendering time of the previous frame. The proposed load balancing algorithm is simple to be implemented and works well for sort-
first parallel rendering system. Experiment results show that our method is effective. Compared with the previous works, the proposed strategies can
effectively use the available graphics resources, thus improving rendering performance of parallel rendering system.

Streszczenie: Metodą polepszenia własności i analizy systemu graficznego jest równoległy rendering oparty o klaster PC. W celu osiągnięcia
równowagi dynamicznego obciążenia odtwarzanych węzłów proponujemy nowy schemat podziału obciążenia. Schemat opiera się o mapę rozkładu
budowaną w zależności od czasu renderingu poprzedniej ramki. Zastosowano prosty do implementacji algorytm, dobrze pracujący w przypadku
wstępnego sortowania, w systemie renderingu równoległego. Wyniki badań wskazują, że zastosowana metoda jest skuteczna. W porównaniu do
poprzednich prac, w zaproponowanej strategii można skutecznie wykorzystać dostępne graficzne zasoby, co poprawia działanie równoległego
systemu renderingu. Strategia równoważenia dynamicznego obciążenia do wstępnego sortowania w równoległym renderingu

Keywords: parallel rendering, sort-first, load balancing.
Słowa kluczowe: rendering równoległy, sortowanie wstępne, równoważenie obciążenia

1. Introduction
Over the last years, the rapid growth of data information

for 3D data processing places a higher demand on
processing speed, data quantity, display size and
frequency, etc. Traditionally, expensive specialized graphics
machines are used to render extremely large data sets.
However, these machines are too expensive for popular
use.

On the other hand, the performance of PCs consistently
improves, and in particular, the development of commercial
graphics cards even exceeds Moore's Law. Thus a PC
cluster that uses cheap cost-effective PCs and a high-
speed network for the hardware platform is used more and
more often as a substitute for an expensive specialized
graphics machine. The research on PC cluster based
parallel rendering has become an effective solution to these
problems by decomposing the rendering task among
graphic resources.

Molnar categorized the parallel rendering system into
three classes [1]: sort-first, sort-middle and sort-last.
However, only sort-last and sort-first are applicable in most
parallel rendering context. In the sort-last situation, the data
is split between the nodes, and each node renders its own
portion. Then, compositing takes the depth information into
account to form a final image from each node’s rendering.
The bottleneck of this situation is the data transmission and
image composition. In the sort-first situation, primitives are
distributed among the nodes at the beginning of the
rendering pipeline, usually by splitting the screen into
regions and associating each region to one node. In this
approach, load balancing is more important to enhance the
rendering performance.

Abraham etc. [2] obtain the dynamic load balance on the
fact that, in an interactive application, the viewpoint
changes very little from frame to frame. So the rendering
time of each pixel in the current frame is estimated by the
rendering time in the previous frame, also known as frame-
to-frame coherence. This scheme enables a fast calculation,
but at the cost of limited accuracy, as sometimes it is
difficult to get exact rendering times of each pixel. Hui C. etc.
in [3] proposed a deferred shading method to obtain load-
balance for sort-first parallel rendering system. Their
method is base on the 2-pass rendering character of
deferred shading to predict the rendering load. Their
algorithm can get accurate load balance but impose much
overhead to the rendering process. Therefore the increased
rendering efficiency is limited.

For parallel rendering system, Equalizer [4] is an open
source research and development framework with respect
to parallel OpenGL program. It provides scalable parallel
rendering based on sort-first, sort-last and other task
decomposition strategies as well as parallel image
compositing. It supports a wide variety of task distribution
approaches from more easily load-balanced time and view-
multiplexing to more difficult sort-last or sort-first parallel
rendering. Especially for the sort-first dynamic screen-
partitioning is supported in the framework as well, similar in
principle as in [1,2] but based on past rendering times. Our
dynamic load balancing algorithm and results are
demonstrated in the context of this parallel rendering
framework.

In this paper, we propose a new load balancing
algorithm to enhance the rendering performance. Our
algorithm explores frame-to-frame coherence and estimate
each node’s load based on its previous frame time.
Differently from previous proposals, we design a new data
structure named Load Distribution Map (LDM) to record the
rendering load distribution. According to the LDM, the
rendering task can be subdivided precisely and equally. It is
very simple to implement, and takes a negligible time to run.
Experiment shows that our algorithm can greatly improve
the performance of the parallel rendering system.

The paper is organized as follows: In the next section,
we describe the dynamic load balancing algorithm in detail
and how it is used in parallel rendering. Section 3 presents
experiments results that illustrate the efficiency of proposed
algorithm used in parallel rendering system. Finally, in
section 4, some concluding and future works are drawn.

2. Dynamic load balancing strategy
In sort-first parallel rendering system, rendering task

assignment is a critical technique to get optimal resource
utilization, maximum throughput, and high scalability. The
rendering load for each rendering slave changes according
to the movement of the user’s view-point or of the object
while the user is browsing in the 3D interactive virtual
scene. The master host has to wait for all rendering nodes
to accomplish their rendering task before composing the
final image. Clearly, the slowest rendering slave represents
the bottleneck of the application. Although, screen space
subdivision is straightforward, how to achieve accurate load
balancing is still unsettled. Our algorithm takes advantage
of frame-to-frame coherence and tries to balance the load
based on the time each node takes to render the previous
frame.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1b/2013 57

2.1. Rendering load distribution measurement
In order to divide rendering task equally, we need to

measure the load distribution among screen space first. For
most interactive rendering applications, position of the
viewpoint could make change all the time, such that
estimating each node’s rendering task need to traverse all
the geometry primitives with view frustum culling, which is
too costly for real-time rendering and is a great challenge.
In this paper, we measure each node’s load by counting the
rendering time of previous frame, and then we design a
special data structure to store the load distribution. We call
this data structure as Load Distribution Map (LDM).
According to the LDM, we can get a precise load
distribution among the rendering node.

By partitioning the LDM, a better load balancing for the
next frame could be obtained. In this way dynamic load
balancing could be achieved.

First of all, some concepts for our algorithm are
introduced. Render time (, 1, 2,..., , 1, 2,....)ijRT i N j  refers to

the ith rendering slave to render scene of the jth frame,

the resolution of the sub-image is define
as (, 1,2,..., , 1,2,....)ijMN i N j  , and the number of pixels

which have been shaded is define as ijCN . Then we define
the LDM as:

(1)
0 ([][])

[][]
/ ([][])ij ij

if pixel m n notbeenshaded
LDM m n

RT CN if pixel m n beenshaded





For example, suppose that the previous frame rendering
result is a very low resolution image, as shown in figure 1,
which is rendered by four rendering nodes. The resolution
of the display is 14×10. The four sub-images are
respectively displayed in upper-left, upper-right, lower-left
and lower-right corner. If the rendering time of the upper-left
rendering slave for the previous frame is 29.04ms. From the
figure we can see that the number of pixels which have
been shaded is 12. The rendering task per pixel can be
obtained by equation (1). Then the LDM is build for the first
node, as shown in the upper-left corner in figure 2. In the
same way, we can build the other LDM for other render
nodes respectively. After that, the overall load distribution
map is build as figure 2. The next work is to divide the LDM
into discrete, non-overlapping tiles.

Fig. 1. A low resolution image rendered by four rendering slaves

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2.42 0 0 0 0 0 0 0 0 0 0 0

0 0 2.42 2.42 2.42 2.42 2.42 2.56 2.56 2.56 2.56 2.56 0 0

0 0 2.42 2.42 0 0 0 0 2.56 2.56 2.56 2.56 0 0

0 0 2.42 2.42 0 2.42 2.42 2.56 2.56 2.56 2.56 2.56 0 0

0 0 1.73 1.73 0 0 0 1.24 1.24 1.24 1.24 1.24 0 0

0 0 1.73 0 0 0 0 0 1.24 1.24 1.24 1.24 0 0

0 0 1.73 0 0 0 0 0 0 0 1.24 0 0 0

0 0 1.73 0 0 0 0 1.24 1.24 1.24 1.24 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fig. 2. The LDM for the low resolution image

2.2. Rendering load assignment

In sort-first architecture, rendering task assignment
should first divide the whole screen space into N tiles and
with all tiles have the same amount of load, where N is the
number of rendering slaves in the cluster. Mueller [1] has
pointed out that natural choices to subdivide the screen
include horizontal strips, vertical strips, and more
rectangular shapes. Square shapes are often the preferred

choice because they minimize the total region boundaries,
thus minimizing the percentage of overlapping primitives. In
our algorithm, the rendering load is measured by the LDM.
For each rendering slave, its rendering task is measured by
summing the data filled in the corresponding part of LDM.
As the size of LDM is similar to the size of screen space,
screen subdivision can be looked as LDM subdivision. In
order to minimize tile boundaries, we choose to divide the
LDM into rectangular tiles. For a perfect balancing, each tile
should have a load equal to the overall frame time over the
number of rendering slaves.

Just like figure 3(a). LDM can be regarded as a special

tile D, which is at the origin of 0 0(,)x y and with the

resolution of ()W H W H  . Then the tile D can be
subdivided as follow. The whole process can be shown as
figure 3.

1) Compute rendering load
0

0

[][]
y H

j
i y

T LDM i j




  for each

column, and the total
0

0

x W

total j
j x

T T




  , where

0 0 0 0[,], [,]i x x W j y y H    ;

2) Accumulate the column load from left to right as:
0

0

0 0[,]
x k

k i
i x

T T k x x W




   ;

3) If 1/ 2k total kT T T   , then position k is a splitting

boundary of the two sub-tiles '
1D and '

2D ;

4) Repeat step 1 to 3 for '
1D and '

2D until the

subdivision depth reaches 2log N ;
The whole process can be shown in figure 3.

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2.42 0 0 0 0 0 0 0 0 0 0 0

0 0 2.42 2.42 2.42 2.42 2.42 2.56 2.56 2.56 2.56 2.56 0 0

0 0 2.42 2.42 0 0 0 0 2.56 2.56 2.56 2.56 0 0

0 0 2.42 2.42 0 0 0 2.56 2.56 2.56 2.56 2.56 0 0

0 0 1.73 1.73 0 0 0 1.24 1.24 1.24 1.24 1.24 0 0

0 0 1.73 0 0 0 0 0 1.24 1.24 1.24 1.24 0 0

0 0 1.73 0 0 0 0 0 0 0 1.24 0 0 0

0 0 1.73 0 0 0 0 1.24 1.24 1.24 1.24 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
(a)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2.42 0 0 0 0 0 0 0 0 0 0 0

0 0 2.42 2.42 2.42 2.42 2.42 2.56 2.56 2.56 2.56 2.56 0 0

0 0 2.42 2.42 0 0 0 0 2.56 2.56 2.56 2.56 0 0

0 0 2.42 2.42 0 0 0 2.56 2.56 2.56 2.56 2.56 0 0

0 0 1.73 1.73 0 0 0 1.24 1.24 1.24 1.24 1.24 0 0

0 0 1.73 0 0 0 0 0 1.24 1.24 1.24 1.24 0 0

0 0 1.73 0 0 0 0 0 0 0 1.24 0 0 0

0 0 1.73 0 0 0 0 1.24 1.24 1.24 1.24 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
(b)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2.42 0 0 0 0 0 0 0 0 0 0 0

0 0 2.42 2.42 2.42 2.42 2.42 2.56 2.56 2.56 2.56 2.56 0 0

0 0 2.42 2.42 0 0 0 0 2.56 2.56 2.56 2.56 0 0

0 0 2.42 2.42 0 0 0 2.56 2.56 2.56 2.56 2.56 0 0

0 0 1.73 1.73 0 0 0 1.24 1.24 1.24 1.24 1.24 0 0

0 0 1.73 0 0 0 0 0 1.24 1.24 1.24 1.24 0 0

0 0 1.73 0 0 0 0 0 0 0 1.24 0 0 0

0 0 1.73 0 0 0 0 1.24 1.24 1.24 1.24 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
(c)

Fig. 3. Process of LDM subdivision

3. Experimental result
We implemented and tested the proposed algorithms on

a cluster composed of 5 Dell precision T3400 workstations,
which equipped with Intel Core 2 Duo E6550 2.33GHz
(Allendale) and 2 GBytes of RAM, running Windows XP
operating system. One of these workstations is worked as
master host and display monitor, while the others are work
as rendering nodes. All the workstations are connected by a
switched Gigabit Ethernet work, running on Windows XP
operation system. The packet/frustum ray tracer is used for
rendering.

58 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1b/2013

To test the performance of our algorithm, we compare it
with two different load balance algorithm: Abraham’s
algorithm outlined in, and deferred shading based
algorithm, which use the character of deferred shading to
predict the rendering load distribution among the screen
space. As we known, a good load balancing algorithm
would be the one which not only make all the rendering
nodes accomplish their task in the same time, but also get a
higher frame rate for the rendering system. Therefore,
during the experiments, we measured the load-imbalance
which is defined as the ratio of the maximum rendering time
over the average rendering time. Lower value of the
maximum/average load ratio is considered as more
reasonable load-balance. At the same time, we also record
the frame rate of different algorithm used in the parallel
rendering system.

Fig. 4. Test scene: dragon

The test scenes are shown in figure 4, which contains

871470 triangles. For each algorithm, we have run the
Equalizer parallel rendering system three times to make
sure we have consistent frame timing statistics among the
three results for each frame. During the experiment, the
viewpoint circled around the virtual scene. The camera path
was also the same for each run.

0 10 20 30 40 50 60 70 80
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Frame Count

M
a
x
 l
o
a
d
/A

v
e
ra

g
e
 l
o
a
d

Abraham’s algorithm
Deferred shading based algorithm
Our algrithm

 0 10 20 30 40 50 60 70 80
16

18

20

22

24

26

28

30

Frame Count

F
ra

m
e

ra
te

 (
F

ra
m

e
s
/s

)

Abraham’s algorithm
Deferred shading based algorithm
Our algrithm

(a)Load-imbalance (b) Rendering frame rate

Fig. 5. Rendering frame rate test with different load balancing
algorithms

Figure 5 shows the experimental result we achieved.

From figure 5(a), we can see that our algorithm is
approximately the same ratio with deferred shading base
algorithm. Obviously, they all provided most ratios below
1.3 with an average value below 1.2. While Abraham’s
algorithms made the load imbalance value supra 1.5 and
also made the value is much wavier than our algorithm. I
think the main reasons are as follow: (i) for deferred
shading base algorithm, the task assignment is base on
counting the geometry primitives, so it can get a precise
load distribution, that will translate to more equally task
decomposition. (ii) For Abraham’s algorithm, it decomposes
the rendering task only according to the previous rendering
time. But the rendering task per pixel is non-uniform
distributed in the sub-image. Therefore it could only get a
roughly task distribution. This confirms that our algorithm
and deferred shading based algorithm is superior over
Abraham’s algorithm.

At the same time, the test result for rendering
performance is showed on figure 5(b). As Abraham’s

algorithm in load balance is worse than others, it achieves a
lower frame rate than others. Comparing with deferred
shading base algorithm, our method can get a higher frame
rate. That’s because our algorithm impose less over head to
the parallel rendering system.

4. Conclusion and future works

In this paper, we have presented a new dynamic load
balancing approach integrated into Equalizer. Using simple
frame timing statistics from past frames, we design a data
structure named LMD to store the load distribution.
According to the LDM our algorithm could decompose the
render task equally. Combined with the load balancing
algorithm, we have also proposed an optimizing strategy.
The presented optimization is based on the sequence of the
parallel computation. The proposed algorithm has shown
good results for rendering of 3D geometry models, while
being very simple to implement. Experiments show that the
presented strategy successfully enhances the frame rate of
Equalizer parallel rendering system.

There are many avenues for future work, such as the
large data sets stored in each rendering slave which may
cause a low efficient to render special sub-scene. To solve
the problem and improve the efficiency of available graphics
resources, scene data management algorithm is currently
under investigation. Moreover, in order to efficiency of
scene rendering, the parallel occlusion culling may be worth
to study.

Acknowledgements

This research work has been partially supported by
National High-tech Research & Development Program of
China under Grant NO.2010AA804022.

REFERENCES

[1] Molnar S., Cox M., Ellsworth D., Fuchs H.: A Sorting
Classification of Parallel Rendering. IEEE Computer Graphics
and Applications, vol. 14, (1994) 23-32.

[2] Abraham F., Celes W., Cerqueira R., Campos J.L.: A load-
balancing strategy for sort-first distributed rendering. In
Proceedings SIBGRAPI (2004) 292–299.

[3] Hui C., Xiaoyong L., Shuling D.: A dynamic load balancing
algorithm for sort-first rendering clusters. In Proceedings IEEE
International Conference on Computer Science and Information
Technology (2009) 515–519.

[4] Eilemann S., Makhinya M., Pajarola. R.: Equalizer: A scalable
parallel rendering framework. IEEE Transactions on
Visualization and Computer Graphics 15, 3 (2009) 436–452.

[5] B. Moloney, D. Weiskopf, T. Mo¨ ller, and M. Strengert,
“Scalable Sort-First Parallel Direct Volume Rendering with
Dynamic Load Balancing,” Proc. Eurographics (EG) Symp.
Parallel Graphics Visualization (PGV), (2007). 45-52,

[6] Moloney B., Weiskopf D., Möller T., Strengert M.: Scalable sort-
first parallel direct volume rendering with dynamic load
balancing. In Proceedings Eurographics Symposium on
Parallel Graphics and Visualization (2007) 45–52.

[7] Mueller C.: The Sort-First Rendering Architecture for High-
Performance Graphics. In Proceedings of Symposium on
Interactive 3D graphics, (1995) 75-84.

Authors: Ph.D candidate Mingqiang Yin, 1037 Luoyu Road,
Wuhan, China Huazhong University of Science & Technology, E-
mail: ymqeml@yahoo.com; prof. Shiqi Li, 1037 Luoyu Road,
Wuhan, China Huazhong University of Science & Technology.

