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Abstract. In this paper, based on studying the traditional constraint Voronoi diagram generation techniques, an optimized trapezium examining strip 
refinement algorithm for constraint Voronoi grid generation is presented .First, the initial isosceles trapezoid examining strip sets are settled 
according to the constraint condition, then by introducing several control factors to subdivide the examining strip to realize the speedy generation of 
constraint Voronoi grids. Experimental results show the proposed algorithm can get satisfied results even in the complex domain including internal 
boundary constraints, pencil of lines constraints and irregular areas. 
 
Streszczenie: W opracowaniu, w celu wytworzenia siatek Voronoi z ograniczeniami, na podstawie badań tradycyjnej techniki wytwarzania 
diagramem Voronoi, przedstawiono algorytm rafinacyjny tworzenia trapezowej wstęgi badań. Wstępnie ustalono równomierne trapezowe wstęgi 
badań zgodnie z warunkami ograniczeń. Następnie, aby przyspieszyć tworzenie siatek, podzielono badane wstęgi przez wprowadzenie kilku 
współczynników kontroli. Wyniki badań pokazują, że proponowany algorytm daje satysfakcjonujące wyniki w złożonych obszarach, włącznie z 
ograniczeniami wewnętrznymi granicami i wiązkami linii oraz w przypadku nieregularnych pól. Tworzenie siatek Voronoi ograniczeniami w 
przestrzeni dwuwymiarowej przy pomocy algorytmu rafinacyjnego 
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kontroli  
 
 
1. Introduction 

Constraint Voronoi diagram has the characteristics of 
the perpendicular bisector; it can simulate the irregular 
boundary and solve convergence problem the triangular 
mesh is used in some numerical simulation calculation. In 
addition, the mesh refinement and coarsening nature is 
better. Therefore constraint Voronoi diagram have good 
application prospects in the field of engineering technology, 
especially in numerical reservoir simulation, groundwater 
exploration, robot path planning, fluid mechanics and other 
fields.  

One popular way to efficiently construct Voronoi 
diagrams consists in exploiting its duality property with the 
Delaunay triangulation [1]. At present; researches on 
constraint Voronoi grid generation methods can never meet 
the practical requirements of the situation [2].Okabe 
proposed constraint Voronoi diagram generation methods, 
and these algorithms are simple and easy to implement [3]. 
But conforming conditions of these algorithms are relatively 
simple and only contain outer boundary and well point and 
they do not contain inner boundary. KAPPA also proposed 
a generation method of constraint Voronoi diagram [4]. The 
method assumes that inner boundary (such as fault) and 
outer boundary is straight-line segment, and considers 
mutual interference of nodes near the boundary, corner 
points and nodes near the vertical well. The algorithm is 
universal relatively, as it needs deal with about 10 
interference circumstances, the algorithm is relatively 
complex. Literature [5, 6] proposed control circle algorithms 
for generating constraint Voronoi diagram. These 
algorithms are simple, easy to implement and efficient, 
which can solve the generation problem of constraint 
Voronoi diagram in ordinary conforming conditions. 
However its robustness is not very good and it is not 
convergent in some certain complex conforming conditions. 
Literature [7, 8] proposed Voronoi refinement algorithms to 
generate two-dimensional constraint Voronoi diagram. The 
algorithm adaptive is not good under the complex constraint 
conditions. In the case of smaller angle between two limit 
lines, rectangular detection with two boundaries is very 
close to the limit line, operation of refinement trapezium 
examining strip will produce a large number of such 

deformities constraint Voronoi diagram grid cell. In addition, 
the latter part of the algorithm needs to be done a lot of size 
and quality control, especially in the constraint conditions 
near the handle more complicated.  

On the basis of analysing the necessary and sufficient 
conditions on the existence of conforming conditions in the 
constraint Voronoi diagram ,this paper proposed a 
refinement  algorithm of trapezium examining strip for 
constraint Voronoi diagram by introducing several control 
factors. It can ensure the algorithm for convergence under 
complex constraint Voronoi diagram generated mesh has 
good quality; meet the needs of the numerical calculation, 
and could be widely used in various applications. 

This paper is organized as follows. In section 2, the 
basic concepts of constraint Voronoi diagram are given. In 
section 3, a detailed description of refinement algorithm of 
trapezium examining strip for constraint Voronoi diagram, 
including algorithmic ideas, the steps of the algorithm and 
the algorithm time efficient analysis. The experimental 
results of the algorithm proposed are given in this paper in 
section 4. Finally, our work of this paper is summarized in 
the last section. 

 
2. Basic concepts of constraint Voronoi diagram 
2.1 Two-dimensional constraint conditions 

Voronoi diagram is a fundamental concept in 
computational geometry [9].Voronoi diagram is underlying 
data structure concerning space refinement and every 
Voronoi vertex is the circum-centre of corresponding 
Delaunay triangle [2].  

Two dimensional constraint Voronoi grid generation 
refers to the given conditions (also called constraints) PSLG 
(planar straight line graph) A. Finding a point set SV, 
arbitrary line of A can be expressed as some edge union of 
constraint Voronoi grid, and the isolated point  of A called 
constraint Voronoi diagram of the polygon vertex. 

In the two-dimensional case, qualification may be point 
set or line segment set (may include linear, curve) or 
polygon area set. 

1) Constraint point: The given points must be grid 
nodes. 
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2) Constraint line: the generated grids must distribute 
along meander line, and there must not be grids across 
constraint lines. 

3) Constraint surface: a surface of grid block must be 
on given constraint surfaces, and there must not be grids 
across constraint surfaces. 

4) Constraint domain: there must not be grids inside 
inner constraint domain and outside outer constraint domain. 
 
2.2 Qualification constraint conditions 

The qualification of two-dimensional in the Voronoi 
diagram is the collection of any constraint point and 
constraint line in space. In order to facilitate, qualification 
set recorded as: CSS (Constraint Condition Set), expressed 
as:  
(1)           , 1,2, ,n.i i  CSS C  

Where Ci represents a constraint condition of CSS, Ci is a 
constraint point, also can be a constraint line. The collection 
of constraint points in CSS is called the constraint point set, 
denoted as: CPS(Constraint Point Set) , expressed as: 
(2)           1, 1,2, ,m .i i  CPS CP  

Call the collection of segments in CSS the constraint 
segment set, denoted as: CSS (Constraint Segment Set), 
expressed as:  
(3)           2, 1,2, ,m .i i  CSS CS  

Qualification set is a union of constraint points and 
constraint line:  CSS CPS CSS . 

This paper aims to constraint subdivision of any 
qualification, when there appear repeat points, composite 
line and at the intersection of line cause unnecessary 
trouble to the refinement algorithm. Therefore, it should be 
pre-processed, and make qualification in no coincidence 
point, no composite line, and no at the intersection of line. 
The vertices of line are all in constraint set of point. In this 
way, qualification set has normalization, and this process is 
called the standardization process. 

 
3. Trapezium examining strip refinement algorithm  

In order to eliminate the growing point approximate of 
the deformed one edge of the Voronoi polygon Voronoi grid 
unit. Reflect the qualification spatial distribution of regular 
isosceles trapezium examining strip. As shown in figure 1 
shows, in the case of a small angle between the constraint 
lines, protection circle radius at both ends of the line is 
different. Compared with the rectangle examining strip, 
generation point of the trapezium examining strip with 
boundary refinement operation is far away from the 
constraint line. This makes it easy to eliminate some of the 
deformity of grid units. In addition, due to the trapezoidal 
geometric characteristics, examining strip with two 
boundary stretching to the constraint line on both sides of 
increasing examining strip with the radius of circumcircle. In 
the process of generating grid, trapezium examining strip 
can reduce the number of area of growing point of without 
any qualification, to speed up the convergence rate. 

 

 
 
Fig.1. Rectangle examining strip and trapezium examining strip 
with comparison 
 

3.1 Algorithm ideas 
As shown in figure 2. To limit the line AB, for example, 

we respectively construct the protection round in the 
endpoint with certain radius, and initial growing point P1P2 
and P3P4. An isosceles trapezium examining strip is 
constituted by 1 2 4 3P P P P . P'P" is a median line of a 

trapezium. The point O is a trapezium circumcircle canter of 
a circle, radius for |OP1|, circles O doesn’t contain other 
growing point inside, AO and OB must be the constraint 
Voronoi diagram of two Voronoi edge. If the circle O inside 
contains other growing point, add P', P" to the growing 
point of collection in the SV, then the line AB logically can 
be divided into three sub-segments , , .1 1 2 2AO O O O B  O1 is 

the circumcircle canter of the isosceles trapezium 
' "1 3P P P P , O2 is the circumcircle canter of the isosceles 

trapezium ' "2 4P P P P . Repeat this similar empty round 

detection and when necessary the corresponding growing 
point operation increasing, until all detected circle is empty 
(i.e., internal circular does not contain any growing point) 

 
Figure 2 Refinement trapezium examining strip 
 
3.2Description and analysis algorithm  

This paper studies how to generate two-dimensional 
constraint Voronoi diagram. That is, given PLSG (planar 
straight line graph) A is said to be planar areas [10], study 
how to generate its constraint Voronoi diagram. The PSLG 
A, after 2.1 normalization algorithm, further expressed a 
union of a point set PS (Point Set) and a segment Set SS 
(Segment Set), to be    A PS SS . Segment set of SS 
further expressed as external line collection of OSS (the 
outer boundary line set) and the internal segment (within 
the boundary line and an independent set of line segments) 
ISS, to with   SS OSS ISS . 

Definition 1: Let S and T are closed set of point .S and 
T, the minimum distance  
(4)           , min{dis , | , }  dis S T p q p S T  

Definition 2: Given a PSLG A, the local feature size lfs 
(p) of a point p with respect to A is the minimum distance 
between p and on the elements of A that do not contain p. 
Obviously, the lfs (p) > 0.As shown in figure 3, the size of 
the circle in the figure represent different points of 
triangulation domain local feature size. 

Definition3: Given a PSLG A, s∈SS 
(5)          min{dis , | } mind s s t t A     

t and s no public point. Obviously, the dmin(s) > 0.  

 
 
Fig.3. Local feature sizes 
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Algorithm 1: The main process of the algorithm. 
Input: PSLG A ( ,   A PS SS SS OSS ISS ) and the 
uniform distribution the number of un. 
Output: Constraint Voronoi diagram which fulfills PLSG A. 
      Algorithm steps: 

Step1：Calculations of uniform mesh size us, outside 
the boundary area for obs .To with /us obs un . 

Step2：With A and the us as the parameters, call the 
algorithm 2 for calculating the initial growing point, get an 
initialization good trapezium examining strip with a 
collection of XSS and an initialization good growth of a 
collection of SV. 

Step3: With XSS and the SV as the parameters, call 
the algorithm 3 for carrying examining strip with refinement. 

Step4：In the sphere of influence within the region of 
the borehole, radial distributions and add good points to the 
growth of a collection of SV.  

Step5：Call the Delaunay triangulation algorithm set by 
the growing point of the SV to construct D (SV), by using D 
(SV) get CVD (SV). 
Algorithm 2: Calculating the initial growing point (Sub 
procedure). 
Input: PSLG A ( ,   A PS SS SS OSS ISS ) and the uniform 
mesh size us.  
Output: Initialize a good examining strip with a collection of 
XSS and an initialized good growth collection of SV. 

Algorithm steps: 
Step1: s∈ SS, Calculation dmin(s). 
Step2: s∈SS, Let AB be the endpoint. To point A, 

calculation the lfs (A) and radius rA of point A protection. if 
s∈OSS, then  

(6)           min{ A , us}  Ar θ lfs α
 

 (0 ＜θ≤1/3,0 ＜α, typicallyθ=0.3,α=1.0)； If s∈OSS, 
then 

(7)           min{ A , us}  Ar θ lfs β
 

 (0 ＜θ≤1/3,0 ＜β, typicallyθ=0.3, β=0.7), α is external 
constraint   line   endpoint protection radius control factors, 
β is internal constraint line endpoint protection radius 
control factors. Similarly computing the lfs (B) and rB. 

Step3: s∈SS, Let AB be the endpoint. Find the SS 
except s to A is the endpoint of the line segment, recorded 
as RS (A). If RS (A) is empty, reverse extension cord of s 
and the protection of the intersection point A round for p, 
add p to SV. Otherwise, calculate between the s and RS (A) 
the minimum angle αAmin. Similarly calculate αBmin. 

Step4: Calculate 

(8)       
    2 ( ) 2 min sin Amin/3 ,dmin s /3    1 A Ar r s r

 

(9)       
    2 ( ) 2 min sin Bmin/3 ,dmin s /3    2 B Br r s r

 
 r1, r2 for two bottoms in the shape of a trapezium an 
isosceles of long, set the two bottoms A and B respectively 
the protection in P1P2 and P3P4 into round, the four points 
to join SV. 
Algorithm3: refinement trapezium examining strip (Sub 
procedure). 
Input: The trapezium examining strip with a collection of 
XSS, growth element collection SV and uniform mesh size 
us. 
Output: After refinement the trapezium examining strips with 
a collection of XSS and growth element collection SV. 
      Algorithm steps: 

Step1: Definition n, Let n = 0. 
Step2: xs ∈XSS, xs corresponds to the constraint line is 

s, xs circumcircle C. If xs is the initial trapezium examining 
strip of s, two endpoint protection circles is said to be C1 
and C2 respectively. Otherwise, let circumcircle be C1 and 

C2, in the endpoint of xs .Let the distance from the canter of 
C to the centre of C1 and C2 be d1 and d2.when s∈OSS, if 
min{ d1, d2} >γ�us (0 <γ, typicallyγ=1.6) ,to perform a 
Step4. Otherwise, check C whether it contains any point in 
the SV. If contains, to perform a Step4.When s∈ISS ,if 
min{ d1, d2} >δ�us (0 <δ , typicallyδ=1.0),to perform 
Step4. Otherwise, check C whether it contains any point in 
the SV.If contains, to perform Step4. 

Step3: If n > 0, return to Step1 start execution; otherwise, 
end the algorithm. 

Step4: With trapezium median line segments divide xs 
into xs1, xs2 and add to XSS, the intersection of the median 

line and xs is P'P". Add P'P" to SV,  n n 1 , return and 
continue the implementation of Step2. 

Algorithm2 when calculating lfs (P) and dmin(s), for 
each qualification, use variable to record the minimum 

distance. So the time complexity is   /2
1O N 2  (N1 is the 

number of PSLG A qualification). Algorithm3 every time 
check examining strips with the circumcircle to use walking 
algorithm to fast positioning [11]. Of the distribution 
operation of step4 time complexity and set the radius of 
influence of parts, the number of radiation and other 
related ,little effect on the efficiency of algorithm time. Set 
the number of final growing point for N.Step5 you can use 
the empty algorithm to generate the Delaunay triangulation 

mesh, its time complexity is   O NlogN  [11]. The 

generated constraint Voronoi diagram, each generate a 
constraint Voronoi diagram grid cell call first seen walking 
algorithm for fast positioning of the growing parts, then 
generated directly constraint Voronoi diagram grid cell. The 
number of the input PSLG N1 is far less than quantity of 
growing points in the generating constraint Voronoi diagram, 
therefore, the algorithm computation lies in the algorithm 

Step5, to be   O NlogN . 

Based on the above analysis, the time complexity of the 

entire algorithm is   O NlogN . 

 
4. Experimental results 

The experiment was performed using Visual C++ and 
CGAL. Hardware Environment mainly consists of CPU 
Core2 Duo T5670 1.8GHz、Memory2G、Video Memory 
256M,and Operating System is Windows 7 Ultimate. 

 

 
 
Fig.4. PSLG A 
 
     Constraint conditions include constraint point and 
constraint line (outer boundary and inner fault) and 
constraint domain. 
Take PSLG A showed in Figure 4 as input and generate 
conforming Voronoi diagram showed in Figure 5 using the 
algorithm proposed in the paper, which takes 
1017milliseconds to generate the 2D constraint Voronoi 
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diagram and produce 730 grid cells. The PSLG B shown in 
Figure 6 takes 3946 milliseconds to generate the 
conforming Voronoi diagram and produce 1694 grid cells. 
Experiments indicate that the algorithm proposed in the 
paper can effectively deal with inner boundary, linear 
conforming conditions and irregular area to generate 
constraint Voronoi diagram with good quality. 
 

 
 
Fig.5. Generated Voronoi Diagram 

 

 
 

Fig.6. PSLG B 
 

 
 

Fig.7. Generated Voronoi Diagram 
 

 
5. Conclusions and future work 

This paper proposed a refinement algorithm of 
trapezium examining strip for constraint Voronoi diagram. In 
the case of a small angle between the constraint lines, the 
trapezium examining strip can eliminate a part of the 
growing point and approach the edge of the deformed grid 
cell in the Voronoi .Reduce the number of the growing point 
constraint segments outside the region, and improve the 
efficiency of the implementation of the algorithm. At the 
same time, introduce several control factors to simplify the 

processing of the near qualification and ensure the 
algorithm convergence under complex constraints. So that 
the generation constraint Voronoi diagram grid cell has a 
better quality to meet the needs of Coalbed Methane 
numerical simulation calculation .The next work, on the 
basis of the proposed algorithm , study the three-
dimensional the constraint Voronoi diagram generation 
algorithm, and generate three-dimensional constraint 
Voronoi diagram, control  the quality and size. 
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