
68 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 2a/2013

Krzysztof KOŁEK

AGH University of Science and Technology

Windows7 x64 as real-time measurement and control platform

Streszczenie. Systemy operacyjne z rodziny MS Windows, a w szczególności system Windows 7 w wersji 64-bitowej, dominują na platformie
komputerów PC. Artykuł przedstawia cechy Windows 7 umożliwiające realizację systemów pomiarowo-sterujących o stałym okresie próbkowania.
Badano punktualność realizacji zadań czasowych oraz zaproponowano algorytm jej poprawy. Przedstawiono wyniki sterowania laboratoryjnym
modelem trójwymiarowej suwnicy. Windows 7 x64 jako pomiarowo-sterująca platforma czasu rzeczywistego.

Abstract. MS Windows operating systems, in particular 64-bit Windows 7, are the most popular for PC computers. The paper presents some
features of the Windows 7 that can be applied in real-time measurement and control systems running at constant sampling. The jitter of the Windows
timers is shown. An algorithm that improves the accuracy of the timer tasks is proposed. The paper describes control results for 3D crane model
running in the Windows 7 environment.

Słowa kluczowe: system operacyjny, pomiarowo-sterujący system czasu rzeczywistego, niepunktualność.
Keywords: operating system, real-time measurement and control, jitter.

Introduction

MS Windows family of operating systems covers almost
90% of systems installed at notebook and desktop
computers. The trends given in Fig.1 confirm dominant and
increasing position of Windows 7, nevertheless still the
significant position of Windows XP is noted [1].

Fig.1. Trends in the use of operating systems

Increasing number of 64-bit systems is second
significant trend. As mentioned at The Windows Blog,
almost 50% of systems run 64-bit editions of Windows 7.

Two main systems, Windows XP and Windows 7, are
not designed to be hard real-time operating systems
(RTOS) but there is an observable pressure to apply these
OSes for real-time control tasks. The systems are widely
applied and familiar to the user. Also there exists a lot of
software packages applied to design, monitor and analyse
measurement and control systems. Running this software at
one machine and real-time tasks at another machine seems
to be a tempting alternative for expensive commercial
RTOSes. Some commercial real-time extensions of the
MS Windows kernels are also available: RTX [2] or
RTKernel [3]. The extensions are deeply embedded into OS
kernel and, in fact, a separate real-time environment is
established. Unfortunately, the extensions are usually not
compatible with the latest MS Windows kernel versions, in
particular the 64-bit systems are not supported.

Let us consider some features of the 64-bit Windows 7,
probably the most popular OS within next few years, as a
platform for direct execution of real-time measurement and
control tasks.

Requirements of the RT control systems
Basic requirement of the real-time control system is the

reaction guarantee to events within a predefined time
period, regardless on the time and sequence of events
arriving to the computer.

Real-time systems are classified as hard or soft real-
time. In the hard system the reaction must fulfil the time
constraints. Missing a deadline may lead to serious risk to
the controlled plant. In the soft real-time systems some
delays are acceptable but the quality of the system
degrades in such cases.

Most real-time control systems run in one of two ways.
First, responding to external events. Sometimes this mode
is supported by an interrupt system. Second operating
mode makes use of hardware timers to perform some
equally timing distributed tasks.

The first mode is preferred for supporting emergency
signals. The second mode is applied in constant sampling
period control systems. Also measurement systems, where
constant sampling frequency is required, apply constant
timing events. Only the parameters of constant sampling
period systems are analysed in this paper.

Unfortunately, constant sampling is just an idea and in
the real sampling one can observe some deviations to ideal
sampling time points.

Fig.2. Exact and real sampling times

In figure 2 the exact sampling time points for sampling
period T0 are marked as kT0, … (k+3)T0. They differ from the
real sampling point tk, … tk+3 leading to varying sampling
periods TR(k), TR(k+1) and TR(k+2). The deviation of
duration of real sampling periods is called jitter.

There are different sources of the deviation of real
sampling point:
 time jitter of the quartz oscillator. Stability of the quartz

elements usually equals to a few ppm so this factor can
be neglected in our considerations,

 jitter of the network communication in distributed
systems,

kT0 (k+1)T0 (k+2)T0

time

(k+3)T0

tk tk+1 tk+2 tk+3

Tr(k) Tr(k+1) Tr(k+2)

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 2a/2013 69

 jitter in the communication with external I/O devices, e.g.
connected by the USB link [4],

 differences in calculation times in each sampling,
leading to different jitters for sampling and acting,

 also some jitter is introduced by the operating system.
Each OS contains critical sections, which have to be
executed in an uninterruptable way. At the beginning of
the critical section the OS disables interrupts, disabling
also the source of the time pattern for the sampling
periods.
Time jitter continuously changes the sampling period

and may lead to loss of stability. A controller can
compensate the jitter by reading the duration of the
sampling from precise timer and at each sampling period
introduce a new sampling value to the calculations.
Unfortunately, also switching stable controllers does not
guarantee that the system remains stable. Jitter
compensation and the stability analysis are described in
many papers [5].

Jitter in a commercial RTOS

The real-time operating system is optimised to
guarantee low jitter values. As an example the Xilkernel is
considered [6]. The Xilkernel is a small and scallable
microkernel dedicated to MicroBlaze and PowerPC 405
processors embedded in the Xilinx reconfigurable circuits.
The features of the Xilkernel are typical for RTOSes: POSIX
compatible API functions, real-time scheduling algorithms,
real-time synchronization, interprocess communication
services and precise timers.

To measure the jitter parameters the Virtex-4 FPGA
equipped with PowerPC processor was used. The board
was driven by the 100MHz clock. The processor served a
single timer with the 10ms period. A precise timer,
implemented as part of the FPGA, was used for time
measurements. The histogram of the duration of the
sampling periods of experimental data is shown in figure 3.

Fig.3. Jitter histogram of the Xilkernel real-time kernel

Figure 3 shows the histogram of one milion samples.
Each subsequent sample corresponds to the length of time
sampling. One can observe that the sampling times are
very close to the reference period equal to 10 ms. The
deviations among all sampling times are less than 4
microseconds. Some quantitative values of the collected
data are shown in table 1.

Time source in Windows 7

The x86 processors, since Pentium architecture has
been introduced, contain a 64-bit Time Stamp Counter
(TSC). It counts processor clock pulses. Although the TSC
may not be directly accessible by user applications

Windows 7 API contains two functions to read the
frequency and value of this counter:
 QueryPerformanceFrequency – returns frequency in

counts per second. At most of PCs it returns the value of
1688496. It allows time measurements with the 592
nanosecond resolution,

 QueryPerformanceCounter – returns current counter
value.
In the following experiments the TSC API functions are

used to measure all timings.

Process and thread priorities in Windows 7

Priority management in Windows 7 is divided in
assigning priorities to processes and to tasks. There are the
following process priorities, presented in the ascending
priority order:

IDLE_PRIORITY_CLASS,
BELOW_NORMAL_PRIORITY_CLASS,
NORMAL_PRIORITY_CLASS,
ABOVE_NORMAL_PRIORITY_CLASS,
HIGH_PRIORITY_CLASS,
REALTIME_PRIORITY_CLASS.

The highest possible priority preempts all threads, including
important system tasks. If user task operates at the
REALTIME_PRIORITY_CLASS priority level it may cause
unstable system behaviour.

The following priority classes can be asssigned to the
threads:

THREAD_PRIORITY_IDLE,
THREAD_PRIORITY_LOWEST,
THREAD_PRIORITY_BELOW_NORMAL,
THREAD_PRIORITY_NORMAL,
THREAD_PRIORITY_ABOVE_NORMAL,
THREAD_PRIORITY_HIGHEST,
THREAD_PRIORITY_TIME_CRITICAL.

The higherst priority is at the bottom of the list. The
assignment of the priorities to the threads is performend by
the SetThreadPriority function.

It is not recommended to use the
REALTIME_PRIORITY_CLASS in experiments therefore,
the HIGH_PRIORITY_CLASS is applied. In the experiments
the priorities of threads are set to
THREAD_PRIORITY_TIME_CRITICAL. Such selection
guarantees fast, but still safe, execution of the test
application.

Timer sources in Windows 7

Windows 7 contains two types of software timers that
can be applied to trigger periodical time events: the
WM_TIMER message and the multimedia timer. The
resolution and minimum period of both timers is
1 milisecond.

To start the first timer type a thread calls the StartTimer
function. The operating system, when the timer period
expires, sends the WM_TIMER message to the thread’s
message queue. Than the massage is processed by a
callback function specified during the StartTimer call. The
callback functions runs a control or measurement task in
the presented case.

Messages in the queue are handled in the order in
which they appear. It means that the time when the
controller function is started is disturbed even by low-priority
system events like mouse movements.

The jitter histogram of one million samplings is given in
figure 4. One can notice a huge deviation of sampling times.
The desired sampling period was set to 10 ms but real
sampling periods are distributed between 2 and 32 ms.

Also the multimedia timer allows scheduling periodic
events. The advantage of the multimedia timer over the

70 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 2a/2013

WM_MESSAGE method is that the timeGetDevCaps
function in the multimedia library detects the highest
resolution of the timer for the given PC. Also the multimedia
timer does not rely on the message queue to trigger the
timer event. Instead it calls directly a callback function. The
timeSetEvent function starts a timer and establishes a
connection between the timer event and the callback
function.

Fig.4. Jitter histogram of the WM_TIMER timer

Figure 5 shows the jitter histogram of the multimedia
timer for the periodic task. The period is set to 10ms. One
can notice that the samples are much closer aggregated
than the samples in figure 4. But also some slower and
faster samples appear with error higher than 1ms.
Occasionally periods longer than 15ms are observed. Such
disturbances appear mostly during intensive disk and
network operations.

Fig.5. Jitter histogram of the multimedia timer

Modified timer

An example of disturbance of the timer period is shown
in figure 6. When the operating system performs some time
critical operations the timer procedure is delayed. It results
in a longer period duration. In the next timer cycle the
system generates shorter period to keep the average value
of the timer period at the given level.

To overcome the jitter of the period the periodic timer
can be replaced by the single shot timer with a period TS
shorter than T0 (see Fig.7). For the kT0 time the timer is set
to be triggered on kT0+TS. When timer event tk+1 triggers the
callback function the TSC counter is read until the time
(k+1)T0 is reached. Also the priority of the timer task is
raised to the THREAD_PRIORITY_HIGHEST level to
disable the operating system to preempt the callback
function.

Fig.6. Disturbance of the timer event

Fig.7. Operation of the modified algorithm.

If the difference T0-TS is higher than maximum
disturbance of the timer event the modified algorithm
cancels the jitter of the sampling period.

The jitter histogram of one milion sampling periods of
the modified timer is presented in figure 8. The sampling
period T0 has been set to 10ms and the TS to 7ms.

Fig.8. Jitter histogram of the modified multimedia timer

Table 1. Jitter parameters

 X
Ilikernel

W
M

_
T

IM
E

R

M
M

 tim
er

M
odified M

M

tim
er

Average
period
[ms]

9,9999 15,6 9,9999 10,0003

RMS
[ms]

2,54e-4 4,34 6,03e-2 2,53e-3

N10µs 100% 1 37,59% 99,71 %
N100µs 100% 7 93,71% 99,91 %
N1ms 100% 22% 99,96% 99,999%

kT0 (k+1)T0 (k+2)T0

time

tk tk+1 tk+2

Tr(k) Tr(k+1)

kT0+TS (k+1)T0+TS

- read TSC counter loop

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 2a/2013 71

Table 1 summarises parameters of the investigated
timers. In all experiments the period is set to 10ms and one
million samples is acquired and analysed. The average
value and the RMS error of the period duriation are given.
Also the number of periods with the duration error less than
10µs (N10µs), less than 100µs (N100µs) and less than 1ms
(N1ms) is shown.

Real-time experiments

The 3D crane setup is selected as an experimental
model for real-time experiments (see Fig.9). The setup
consists of a bridge and a cart moving along the rails. Also
the length of the string of the payload is controlled. There
are five measurements in the system: position of the bridge,
position of the cart, length of the paylod string and two
angles of the string attached to the payload. The aim of the
experiment is to move the payload to a reference position
and to damp the oscillations of the payload caused by
motion of the bridge and trolley.

Fig.9. Experimental 3D crane setup.

Fig.10. Positions of the bridge, cart and payload

The Windows 7 64-bit system is applied to control the
3D crane model. The software is running the modified
multimedia timer algorithm. The results of the experimet are
given in Fig. 10 and 11. Figure 10 illustrates the positions of
the bridge, cart and the length of the payload rope. The
positions are depicted in the green colour, the reference
position is plotted as blue lines. Figure 11 shows the angles
of the payload. The system is manually disturbed in 16th

second. One can notice the system response to the
reference position modifications and to disturbances.

Fig.11. Angles of the payload

Conclusions
The currently most frequently applied systems for PC

computers, Windows XP and Windows 7, are not equipped
with the dedicated real-time measurement and control
properties. The Windows priority management, task
preemption rules and processing of timer events are not
designed to be used in real-time setups. Nonetheless, as
the systems are popular, users generate the pressure to
apply Windows directly in measurement and control
applications.

The presented multimedia timer processing algorithm
tunes some parameters of the control process to improove
the accuracy of the constant sampling period control tasks.
The control task is executed every 10ms and controls the
laboratory crane system. The task runs directly in the 64-bit
Windows 7 environment.

It is important to emphasise that the presented timer
algorithm does not transform the Windows into the hard
real-time system. Critical control plants require real-time
operating systems. Their principles of operation differ
significantly from the Windows operating rules. However,
the timer algorithm seems to open the way to apply the
Windows in soft real-time measurement and control
architectures for plants that tolerate some jitter in control
algorithms.

REFERENCES
[1] OS Platform Statistics,

http://www.w3schools.com/browsers/browsers_os.asp
[2] http://www.intervalzero.com/soft-control-architecture.htm -

TRX homepage.
[3] http://www.on-time.com/rtkernel-32.htm - RTKernel homepage.
[4] Augustyn J. Bień A., Real time performance of USB interface in

embedded control and measurement systems, Electrical
Review, 2009, 85 nr 7, p1-7.

[5] Marti P., Jitter compensation for real time control systems,
Proceedings of the Real-Time Systems Symposium, 2001.

[6] XILKERNEL Users Guide, http://www.xilinx.com, 2006

Author: dr inż. Krzysztof Kołek, AGH University of Science and
Technology, Institute of Automatics, al. Mickiewicza 30, 30-059
Kraków, E-mail: kko@agh.edu.pl.

Payload

Cart

Bridge

