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A Fast and Efficient 3D Medical Image Registration Method

Abstract. A fast and efficient 3D medical image registration method based on adjusting divergence and curl of image displacement field is presented.
Using the fact that an image registration problem can be formulated as an optimal control problem, corresponding optimization problem is reduced to
solving several Poisson equations. These Poisson equations are solved by finite element (FEM) and multigrid methods (MG), separately. Computational
examples indicate that both solution approaches produce similarly good registration quality but that the cost associated with the multigrid approach is,
on the average, less than that for the FEM.

Streszczenie. W artykule przedstawiono metodę rejestracji obrazu medycznego 3D, opartą na dywergencji i rotacji przesunięć obrazu. W rozwiązaniu
zastosowano równania Poissona, które analizowano niezależnie, metodą elementów skończonych oraz wielosiatkową. Obliczenia pokazują podobną
jakość rejestracji obrazu dla obydwu metod, lecz metoda wielosiatkowa ma mniejsze koszty obliczeniowe. (Szybka i efektywna metoda rejestracji
obrazu medycznego 3D).
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Słowa kluczowe: optymalizacja, rejestracja obrazu, element skończone, metoda wielosiatkowa.

Introduction
The goal of image registration is to align two or more im-

ages of the same scene obtained at different times, perspec-
tives or sensors such as MRI, X-ray, CT, PET, SPECT and to-
mography. Given a reference image R(x) and a template im-
age T(x) the main idea behind image registration paradigm
is to find a reasonable transformation such that transformed
image becomes similar to the reference image. Image reg-
istration has a broad range of applications such as object or
motion tracking, detecting tumors, image fusion among many
other (see, for example, [7, 8]). Image registration is a sig-
nificant and challenging subject which usually involves high
storage requirements, high CPU costs and mostly deals with
noisy, distorted and occluded data. In literature many differ-
ent types of image registration techniques (see, for instance,
[1, 2, 4, 5, 6] and [9, 10]) were developed, some of these
are landmark-based, principal axes-based, elastic, fluid, dif-
fusion and curvature-based registration algorithms. Each of
these algorithms was generated based on a specific applica-
tion, disease or image modality. There is still not any general
image registration technique which could be used in every
sorts of data. Based on these facts finding fast and efficient
image registration techniques are quite useful and still signif-
icantly important area of research.

Organization of the paper is as follows. In the first sec-
tion we overview the methodology behind image registration
paradigm. In Section 2 we present a new method for non-
rigid registration of 3D medical images. We express the im-
age registration problem as an optimization problem and use
the sum of squared difference as the similarity metric. Using
Lagrange multipliers method we obtain the optimality system
consisting of state and costate equations as well as optimal-
ity conditions. From the obtained optimality system we obtain
several Poisson different equations. In Section 3 we solve
these Poisson equations with FEM and MG methods. Com-
putational examples indicate that both of these numerical so-
lution approaches produce similarly good registration quality
but that the cost associated with the multigrid approach is, on
the average, less than that for the FEM.
Optimal Control Approach for Image Registration

The state-of-the-art of the image registration problem
can be expressed in the following way. Assume that both
the template T and reference R images are defined on the
same domain Ω. Then, the image registration problem can
be formulated as the optimization problem

(1) min
φ∈Γ

J [R,T;φu]

for the functional

(2) J [R,T;φu] = Csim[R,T;φu] + λCreg[u],

where Csim[R,T;φu] denotes a similarity measure be-
tween the template image T and the reference image R,
φu(x) := x + u(x) is the deformation field, u is displace-
ment field, Γ is the set of all possible admissible transforma-
tions, Creg[u] is a regularization term and, λ is a regulariza-
tion constant. Because reference and template images are
obtained from different distances, angles, times and some-
times even by different individuals, a deformation field may
occur between these images. A deformation field is a vector
field that maps pixels (or coordinates) of reference image to
the corresponding ones of the template image. One of the
major goals of this paper is to compute the deformation field
in a systematic way.

We choose the L2-norm type similarity measure defined
as
(3)

Csim[R(x),T(x);φ(x)] =
1

2

∫
Ω

(
T(x+u(x))−R(x)

)2
dx.

This similarity measure is often referred to as the “sum of
squared differences” (SSD) measure. Note that other similar-
ity measures can be selected depending on the problem. We
choose the similarity measure (3) due to its well-known effec-
tiveness, for the convenience in computations and for easily
adapting the regularization terms in numerical solutions.

While u = (u1, u2, u3) denotes the image displace-
ment field, we minimize (3) subject to the constraints

div u = ∇ · u = u1x1
+ u2x2

+ u3x3
:= f1 − 1,

curl u = (curlx1
u, curlx2

u, curlx3
u),

= (u3x2
− u2x3

, u1x3
− u3x1

, u2x1
− u1x2

)

:= (f2, f3, f4)

u = 0 on ∂Ω.

Let us do notice that because we are able to control the trans-
lation and rotation of image pixels by means of div u and
curl u, we are using these constraints in the corresponding
optimization problem. In order to solve this constrained op-
timization problem, we express it as an unconstrained op-
timization problem using the Lagrange multipliers method
where v = (v1, v2, v3, v4) are Lagrange multipliers.

Specializing an abstract theorem concerning the exis-
tence of Lagrange multipliers for minimizations on Banach
space [3], we present the following theorem:
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Theorem 0.1 Let V1 and V2 be two Hilbert spaces, F a func-
tional on V1, and G a mapping from V1 to V2. Assume û is
a solution of the following constrained minimization problem:
Find u ∈ V1 that minimizes F(u) subject to G(u) = 0. As-
sume further that the following conditions are satisfied:

(i) F : Nbhd(û) ⊂ V1 → R is Frechet-differentiable at û;
(ii) G is continuously Frechet-differentiable at û;
(iii) G′(û) : V1 → V2 is onto.

Then, there exists a μ ∈ (V2)
∗ such that

F ′(û)v − 〈μ,G′(û)v〉 = 0, ∀v ∈ V1.

Proof: See [3], Theorem 43.19. Here, 〈·, ·〉 denotes the
duality pairing between V2 and (V2)

∗ and F ′(û)v and
G′(û)v denote the actions of F ′(û) as an operator mapping
v ∈ V1 into R and G′(û) as an operator mapping v ∈ V1

into V2, respectively. We will fit our optimization problem into
the above abstract framework.

By using Lagrange multipliers optimization method, we
can express the aforementioned optimization problem as (4)
in page 3 below.
Minimizer of this Lagrange functional results an optimality
system which consists of state equations, co-state equations,
and optimality conditions. Next we obtain the corresponding
optimality system.
State Equations: The state equations are obtained from
Lv1

= 0, Lv2
= 0, Lv3

= 0 and Lv4 = 0, where Lvj

denotes the Frèchet derivative of L.

Lv1 =
d

dε

∣∣∣
ε=0

L[v1 + εδv1]

=
d

dε

∣∣∣
ε=0

∫
Ω

(v1 + εδv1)(div u− f1)

=

∫
Ω

δv1(div u− f1) = 0 for every δv1.

Then,

div u(x) = f1(x).

In the similar way, we obtain the other state equations as
follows:

Lv1 = 0 ⇒ div u = f1,

Lv2 = 0 ⇒ curlx1
u = f2,

Lv3 = 0 ⇒ curlx2 u = f3,

Lv4 = 0 ⇒ curlx3
u = f4.

Costate equations: The costate equations are obtained
from the equations Lu1

= 0, Lu2
= 0 and Lu3

= 0.

Lu1
=

d

dε

∣∣∣
ε=0

[1
2

∫
Ω

[T (x1 + u1(x) + εδu1(x),

x2 + u2(x), x3 + u3(x))−R(x)]2

+

∫
Ω

v1(div (u1 + εδu1, u2, u3)− f1)

+

∫
Ω

v3(curlx2 (u1 + εδu1, u2, u3)− f3)

+

∫
Ω

v4(curlx3
(u1 + εδu1, u2, u3)− f4)

]

=

∫
Ω

(T (x+ u(x))−R(x))Tφ1 δu1 +

∫
Ω

v1(δu1)x1

+

∫
Ω

v3(δu1)x3
+

∫
Ω

v4(−δu1)x2

=

∫
Ω

(T (x+ u(x))−R(x))Tφ1
δu1

+

∫
Ω

(v1,−v4, v3) · ∇δu1

=

∫
Ω

[(T −R)Tφ1
δu1 −∇ · (v1,−v4, v3)δu1]

=

∫
Ω

[(T −R)Tφ1 −∇ · (v1,−v4, v3)] δu1 = 0

for every δu1, which gives us the first costate equation

∇ · (v1,−v4, v3) = (T −R)Tφ1 .

Hence, the costate equations are given by

Lu1 = 0 ⇒ (T −R)Tφ1 = ∇ · (v1,−v4, v3),

Lu2 = 0 ⇒ (T −R)Tφ2 = ∇ · (v4, v1,−v2),

Lu3
= 0 ⇒ (T −R)Tφ3

= ∇ · (−v3, v2, v1).

Optimality conditions: The optimality conditions are ob-
tained from the equations Lf1 = 0, Lf2 = 0, Lf3 = 0
and Lf4 = 0.

Lf1 =
d

dε

∣∣∣
ε=0

[w1

2

∫
Ω

(f1 + εδf1)2

+

∫
Ω

v1(div u− (f1 + εδf1))
]

=

∫
Ω

(w1f
1 − v1)δf

1 = 0 for every δf1,

which gives us the first optimality condition

w1f
1 = v1.

Hence, the optimality conditions are given by

Lf1 = 0 ⇒ w1f
1 = v1,

Lf2 = 0 ⇒ w2f
2 = v2,

Lf3 = 0 ⇒ w3f
3 = v3,

Lf4 = 0 ⇒ w4f
4 = v4, .

Decoupling: We will reduce this system of equations to a
set of Poisson equations in the following way: Define F1 :=
f1 − 1, F2 := f2, F3 := f3, F4 := f4. Then, the

200 PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R.89 NR 2a/2013



L[u; v; f ] =
1

2

∫
Ω

[T (φ(x))−R(x)]
2
dx+

w1

2

∫
Ω

(f1)2(x)dx+
w2

2

∫
Ω

(f2)2(x)dx+
w3

2

∫
Ω

(f3)2(x)dx +

w4

2

∫
Ω

(f4)2(x)dx

∫
Ω

v1(x)(div u(x)− f1(x))dx+

∫
Ω

v2(x)(curlx1
u(x)− f2(x))dx +

(4) ∫
Ω

v3(x)(curlx2
u(x)− f3(x))dx+

∫
Ω

v4(x)(curlx3
u(x)− f4(x))dx.

state equations imply that

Δu1 = F1x1
+ F3x3

− F4x2
,

Δu2 = F1x2
− F2x3

+ F4x1
,

Δu3 = F1x3
+ F2x3

− F3x1
, .

For simplicity, letting w2 = w3 = w4, and defining G :=
(G1, G2, G3) as Gi := (T − R)Tφi , i = 1, 2, 3, and using
the fact that div curl u= 0, we obtain

Δv1 = G1x1
+G2x2

+G3x3
,

Δv2 = −G2x3
+G3x2

,

Δv3 = G1x3
−G3x1

,

Δv4 = −G1x2
+G2x1

, .

This optimality system is numerically solved by a simple iter-
ative scheme in a decoupled manner that can be described
as follows:

• Suppose that at the kth step, we have found (f1)k,
(where f1 =div u) and ((f2)k, (f3)k, (f4)k), where
(curl u= (f2, f3, f4)).

• Obtain uk = (uk
1 , u

k
2 , u

k
3) from the decoupled state

equations.
• Obtain vk1 , v

k
2 , v

k
3 , v

k
4 from the costate equations.

• Next get new controls
((f1)k+1, (f2)k+1, (f3)k+1, (f4)k+1) from the
optimality conditions.

• Normalize controls and repeat the same process until
the error condition is satisfied or a present number of
iterations is achieved.

Computational Results
Example: In this example, we demonstrate the registration
of a three-dimensional MRI image. The reference and the
template images are given as 65×65×33 data. We set ω =
200 and wi = 120 for i = 1, 2, 3 and, after 200 iterations,
Csim = 3.32 with MG method. The template, reference, and
registered images are shown in Figure 1.

Table 1. The similarity measure Csim and the cost in computational
time.

MG FEM
Iterations Csim cost Csim cost

1 1674.6 1 sec 1674.6 2 sec
2 908.5 1.1 sec 1102.5 2 sec
5 160.7 2 sec 209.9 4 sec

20 40.7 7 sec 63.5 16 sec
40 15.8 15 sec 26.5 34 sec
60 10.7 20 sec 16.5 55 sec

120 6.4 38 sec 12.5 2 mins
200 3.9 55 sec 7.5 3 mins

Comparison with some other related methods
In this paper we present a 3−D medical image registra-

tion method based on adjusting divergence and curl of image

Fig. 1. The template image (top), the reference image (bottom left),
and registered image (bottom right).

displacement field. In this section first we briefly overview
some related methods and secondly compare the present
method with those related methods.

In a recent paper [11] the authors presented a method
for integration of 3−D medical data by utilizing the advan-
tages of 3−D multiresolution analysis and techniques of vari-
ational calculus. They first expressed the data integration
problem as a variational optimal control problem where the
displacement field was written in terms of wavelet expansions
and secondly they wrote the components of the displacement
field in terms of wavelet coefficients. The authors solved this
optimization problem with a blockwise descent algorithm and
demonstrated the application of the method by the registering
3−D brain MR images in the size of 257×257×65. Duration
of the medical data integration process was about 2 minutes
and the registered image seems has features of both refer-
ence and template image. Detailed information about this
method can be seen at [11].

In another paper [12] the authors introduces several
mathematical image registration models employing some
curvature driven diffusion based techniques, in particu-
lar, Perona–Malik, anisotropic diffusion, mean curvature
motion (MCM), affine invariant MCM (AIMCM). Adopting
the steepest-descent marching with an artificial time t,
Euler-Lagrange (EL) equations with homogeneous Neumann
boundary conditions are obtained. These EL equations are
approximately solved by the explicit Petrov-Galerkin scheme.
The method is applied to the registration of brain MR images
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of size 257 × 257. Computational results indicate that all
these regularization terms produce similarly good registration
quality but that the cost associated with the AIMCM approach
is, on the average, less than that for the others. Duration of
the registration with each model was around 1 to 3 minutes
depending on the diffusion term and the quality of the regis-
tered images was quite good as well.

An image registration method might be described as ef-
ficient if the quality of the registered images is good, duration
of the registration process is short and the amount of the sim-
ilarity measure is small. The quality of the matched images
using aforementioned techniques is almost the same and the
information about duration of registration and the amount of
the similarity measure is given by .

Table 2. The similarity measure Csim and the cost in computational
time.

Ours with MG The method at [11]
Iterations Csim cost Csim cost

1 1674.6 1 sec 2400 2 sec
2 908.5 1.1 sec 2100 2 sec

15 55.1 7 sec 1200 4 sec
40 15.8 15 sec 400 19 sec
120 6.4 38 sec 160 44 sec
200 3.9 55 sec 22 1 mins

Table 3. The similarity measure Csim and the cost in computational
time.

AIMCM PM
Iterations Csim cost Csim cost

1 1674.6 1 sec 1674.6 2 sec
2 908.5 1.1 sec 1102.5 2 sec

15 160.7 2 sec 209.9 4 sec
30 40.7 7 sec 63.5 16 sec
80 15.8 15 sec 26.5 34 sec

160 10.7 20 sec 16.5 55 sec
240 6.4 38 sec 12.5 2 mins
400 3.9 55 sec 7.5 3 mins

As the and the medical images indicate the present
method is a highly efficient medical image registration
method.

Concluding remarks
Nonrigid image registration is a significant branch of im-

age processing. It has broad application in medical and non-
medical imaging. For example, it can be used in analyzing lo-
cal anatomical variations that exist between images acquired
from different individuals or atlases. It can serve as a power-
ful tool for combining information from multiple sources, moni-
toring changes in an individual, detecting tumors and locating
disease, motion correction, image fusion, and many more.

In this paper, we presented a systematic method for
the nonrigid registration of 3D images. The Lagrange multi-
plier method was used to describe the constrained optimiza-
tion problem as an unconstrained optimization problem. We
solved the resulting coupled system of Poisson equations by
the finite element and multigrid methods. A computational
example was given to test the algorithm. Preliminary exper-
iments show promising results and great potential for future
extensions. We tested the algorithm using some other med-
ical images and some 3D synthetic images. Because the
computational results are quite similar to the one presented
in this paper, we skip to introducing them inhere for the sake
of brevity. The registration of example images currently took

between less than 1 minute to about 3 minutes of CPU time
via MG and FEM, respectively, which makes routine applica-
tion in a clinical environment possible. In the future work we
plan to apply the present method to the registration of image
which includes certain level of noise and compare the method
with some other well-known methods in the literature. Finally,
we list some advantages of present method:

• It is based on a solid mathematical foundation. In par-
ticular, it accounts for local volume changes through the
divergence of the transformation and accounts for local
rotations through the curl of the transformation.

• The method is based on a linear differential system; its
numerical implementation is fast and quite efficient.

• The method is general in the sense that it may be used
in any optimization problem that involves motion estima-
tion. Thus, it has the potential to be the numerical kernel
for a wide range of applications.
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