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A novel forward problem solver based on meshfree method for 
electrical impedance tomography 

 
 

Abstract. In this paper the meshfree method is developed to solve the forward problem for electrical impedance tomography. Differing from finite 
element method and finite volume method, there is no mesh generation in meshfree method, which is easier to realize and more propitious to be 
developed as an adaptive procedures for image reconstruction. Numerical simulation results are presented and compared with the results of 
analytical solution. It is observed that the obtained results are consistent with the results of analytical solution. 
 
Streszczenie. W artykule zaproponowano nowa metodę tomograficznej analizy impedancji w której nie generuje się oczek jak na przykład w 
metodzie elementów skończonych. Dzięki temu uzyskuje się łatwiejsza analizę, w tym także metodami adaptacyjnymi. (Nowa bezoczkowa metoda 
tomografii impedancji elektrycznej) 
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1 Introduction 

The Electrical Impedance Tomography (EIT) is the 
process of estimating internal conductivity (changes) 
through low frequency currents injected into an object and 
voltages measured at the surface. It was widely applied in 
fields of biomedicine, geophysics and industry. Compared 
with the conventional techniques such as X-ray computed 
tomography (CT) and magnetic resonance imaging (MRI), 
EIT is conveniently portable and cost effective. 

There are two aspects of the EIT problem, forward 
problem and inverse problem. The forward problem of EIT 
calculates boundary voltages with the given electrical 
conductivity distribution, while the inverse problem takes 
voltage measurements at the boundary to estimate the 
conductivity distribution. The estimating process is also 
called as image reconstruction. Almost all approach 
proposed for EIT reconstruction requires some method to 
solve the forward problem based on pre-assumed 
conductivity so that the predicted voltages can be compared 
with the measured data. 

The methods proposed to solve the forward problem 
include analytical methods, finite difference methods (FDM), 
boundary element methods (BEM), finite element methods 
(FEM) and finite volume methods (FVM). While analytical 
methods are restricted to very simple domains and FDM 
typically require grids that are topologically regular in some 
sense, BEM, FEM and FVM are fairly easy to handle 
arbitrary geometries and boundary shapes. 

Although with the BEM only the surface needs to be 
discretized, but BEM alone can only be used on 
homogeneous regions, and is useful for fitting impedance 
values to known regions [1]. To non-homogeneous 
conductivity distributions on irregular domains problem, the 
FEM and FVM is more suitable. The comparison between 
FEM and FVM for EIT forward problem was described in [2]. 
These methods require an efficient mesh of an object with 
smooth but irregular surfaces, which respects interior 
boundaries and electrodes on the surface. The mesh 
density needs to be determined as a function of position so 
that high field strengths (for example near electrodes and 
where conductivity has sharp contrasts) can be accurately 
represented without excessive density in areas where the 
field varies slowly [3]. The use of adaptive meshing in both 
forward and inverse problems was explored in [4], but in 
practice, it is very time consuming for just trying to develop 
specific procedures to define the mesh or to properly refine 
it. Mesh generation is a far more time-consuming and 

expensive process than the assembly and solution of the 
FE or FV equations. 

Recently, meshfree methods have become attractive 
alternatives for problems in computational electromagnetics   
[5-8]. These methods do not require a mesh to discretize 
the problem domain. The approximation functions are 
constructed entirely using a set of scattered nodes, and no 
element or connectivity of the nodes is needed. Meshfree 
techniques include two classes: those based on 
collocations and those based on weak forms. The former is 
a truly meshfree method and does not require a mesh 
structure or a numerical integration procedure, but that is 
less stable and less accurate. Selection of nodes based on 
the type of a physical problem is still important for obtaining 
stable and accurate results [9]. The latter include two 
categories: those require background cells for the 
integration over the entire problem domain and those 
require background cells locally for the integration. The 
methods belonging to the second category are essentially 
mesh free because creating a local mesh is a simpler task 
that can be performed automatically without any 
predefinition for the local mesh [9]. The meshless local 
Petrov-Galerkin (MLPG) methods belong to this category. 
Because there is no need to generate a mesh, the nodes 
can be settled by a computer in a fully automated manner 
and the nodes can be added or deleted easily whenever 
and wherever needed, the meshfree method has great 
potential for solving the difficult problems with complex 
geometries and the adaptive schemes can be easily 
developed. 

In [10], an approach combined FEM with meshfree 
method was proposed to solve the forward problem of EIT. 
The approach used element-free Galerkin (EFG) method 
based on moving least square (MLS) approximation 
function to discretize the mesh free region. The EFG 
method needs background cells for the integration over the 
entire problem domain. In this paper, a novel MLPG method 
based on the Radial basis functions (RBF) was developed 
for the numerical solution of the forward problem for EIT. 

The following discussion begins with the local weak form 
discretization of the forward problem and the calculation 
with the MLPG method based on the Radial basis functions 
(RBF-MLPG) in Section 2. The Section 3 gives a numerical 
example and the result was compared with analytical 
solution. At the end, conclusions and discussions were 
given in Section 4. 
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2 The Solution of Meshfree Method 
2.1 The Weak Form of Forward Problem for EIT 

In EIT, the potential distribution function u and 
conductivity distribution function σ in the region Ω are 
governed by the Laplace equation (1) subject to the 
boundary condition (2). 
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where x is a point in the problem domain, j is the current 
density applied on the boundary, Ω is the boundaries of Ω 
and n is the unit outward normal vector to the boundary 
surface. Note that, the injected current in EIT is orthogonal 
to boundaries. Hence, we define the right part of equation 
(2)  as the module of current density.  

The basic idea in MLPG is that the implementation of 
the integral form of the weighted residual method is 
confined to a very small local sub-domain of a node. That is 
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where uh is the approximated solution of u and Ψi (the cubic 
or quartic spline can be chosen ) is the weighted function 
which define on the sub-domain Ωi. Integration by parts and 
application of the Gaussian integration formula lead to 
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where Гi is the boundary of the sub-domain Ωi and n is the 
unit outward normal vector to the boundary Гi. If the 
weighted function was selected in such a way that it 
vanishes on Гi, then in the case of sub-domain Ωi is located 
entirely within the global domain Ω, the expression of (4) 
was changed to 
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and in the case of sub-domain Ωi intersects with the 
problem boundary Ω, the expression of (4) would be 
changed to 
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where Гit is the part of the natural boundary that intersects 
with the sub-domain Гi. 

 

 
Fig.1. The influence domain and the quadrature domain. 

 
2.2 The Quadrature Scheme 

The integrations over the sub-domain in equations (5) 
and (6) have to be carried out via numerical quadrature 
techniques. To ensure accurate numerical integration, the 
Gauss quadrature scheme was used. 

In this paper, two types of sub-domain, the influence 
domain and the quadrature domain, were defined as shown 
in Fig.1. 

The influence domain is defined for each node in the 
problem domain, as shown in Fig.1, node 2 is included for 
constructing shape functions for the point marked with x at 
point xQ, but node 1 is not included. For the convenience to 
implement the Gauss quadrature, a rectangle sub-domain 
ΩQ was chosen as the quadrature domain of node i. To 
ensure accurate numerical integration, ΩQ was divided into 
4 cells and for each cell 4×4 Gauss points were selected. 
By applying the Gauss quadrature scheme, the left hand of 
the expression of (5) and (6) were changed to 
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where xQp is the pth Gauss point in nth cell and Ap is the 
coefficient of pth Gauss point. The subscript variable i 
denotes the integration is over the quadrature domain of 
node i. The subscript variable x or y denotes the partial 
derivative of the weighted function or the approximated 
solution. 

Compare with the integrations over the sub-domain, 
the curve integration for boundaries in equations (6) is 
simpler for EIT forward problem because of j only has value 
on the injected point and outflow point. So the curve 
integration value would be 
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2.3 The RBF Approximation 
In this paper, the RBF approximation procedure was 

performed to obtain the integrand. The approximate 
function of u in sub-domain, discretized by a set of nodes 
which included for constructing shape functions for point xQ, 
can be interpolated using radial basis functions as: 
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where Ri(x) is the radial basis function in the space 
coordinates xT=[x,y], n is the number of nodes in the 
neighborhood (refers to the domain of interpolation) of xQ, 
and ai(xQ) are the coefficients for Ri(x), respectively, 
corresponding to the given point xQ. 

Enforcing the interpolation to pass through all n 
scattered points within the sub-domain leads to the 
following set of equations for the coefficients ai(xQ) 
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which can be expressed in matrix form as follows: 

(11)        aRU Q  
where U=[u1, u2,…, un] is the vector that collects all the field 
nodal variables at the n nodes in the support domain and 
RQ is the interpolation matrix of rank (n×n) as follows: 
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which is a constant matrix for given locations of the n nodes 
in the sub-domain. Mathematicians have proved that the 
radial moment matrix RQ is always invertible for arbitrary 
scattered nodes [11-13] that is the major advantage of 
using the radial basis over the polynomial basis. 

The coefficients can be obtained as: 
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where RQ
-1 is the inverse matrix of RQ .Finally, the 

interpolation can be expressed as: 
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2.4 The Calculation with RBF-MLPG 
Using Equation (5) or (6) and using Gauss quadrature 

scheme over the sub-domain, leads to discretized system 
equations for each node in the problem domain. This gives 
a set of algebraic equations for each node. By assembling 
all these sets of equations, a set of discretized system 
equations for the entire problem domain can then be 
obtained. Substitution of equation (14) into equation (5) or 
(6) for all nodes leads to the following discretized system of 
linear equations: 
(16)         fKU   
where K and f are "stiffness" matrix and the "load" vector 
respectively defined as: 
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Because the influence domain is compact, the system 
matrix K produce by MLPG is sparse and the solving 
procedure of linear equations (16) is efficient. 

  
Fig.2. Flowchart of RBF-MLPG method. 

 

The flowchart of the algorithm to solve the forward 
problem of EIT using the RBF-MLPG method is presented 
in Fig.2.  

 

3 Simulation Results 
In this paper, a model of a 2-D homogeneous (σ=1) 

circular was adopted to observe the accuracy of the RBF-
MLPG method and to illustrate it’s feasibility in solving the 
EIT forward problem, although the meshfree method has an 
advantage over FEM lies in it is more effective for the 
problem with complex geometries and is easier to take an 
adaptive scheme. 

For precise investigation, the following error indicator 
was used: 

(18)        











N

i

exact
i

N

i

num
i

exact
i

u

uu

e

1

2

1

2

)(

)(

 

where N is the node number in problem domain, ui
exact is the 

potential value of node i calculated by the analytical method 
and ui

num is the potential value of node i calculated by the 
numerical methods. 

For the convenience to compare, the MLPG model was 
chosen to use the same uniform nodes with the FE model. 
The relative errors obtained with different dimension were 
list in table 1. 

Table 1. The relative errors obtained with different dimension. 
Node 

Number 
Relative Errors 

MLPG FEM 

37 2.24% 3.87% 

81 1.46% 2.37% 

177 1.39% 1.47% 

217 1.16% 1.30% 

It is shown that more accurate estimates of the 
potential distribution could be obtained with the RBF_MLPG 
solution. 

To test the robust of the proposed method, a scattered 
217 nodes model which has the same boundary nodes with 
the uniform 217 nodes model, as shown in Fig.3, was 
simulated. 

 
Fig.3. The uniform nodes model (left) and the scattered point model 
(right). 

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Node

P
ot
en
t
ia
l

Scattered Point Model

Uniform Nodes Model

 
Fig.4. The potential of boundary nodes. 

The potential of boundary nodes was shown in Fig.4 
and the relative error on the boundary nodes between these 
two models is 1.98%. It means that stable estimates of the 
potential distribution can be obtained with the RBF_MLPG 
solution. 
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4 Conclusions 
The RBF-MLPG method was developed to solve the 

forward problem for EIT. A local interpolation technique 
using RBF was used to construct the trial function entirely in 
terms of a set of scattered nodes. The novelty of the paper 
is the use MLPG which does not need global domain 
integration and only integrations on the local domains are 
needed. Compared to finite element method in transient 
procedure, MLPG does not need mesh generation which 
leads to more efficient computations. The results show that 
MLPG is highly accurate and robust.  
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