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Abstract. The paper describes a monitoring method of damage detection in induction motor rolling bearings. The method is based on wavelet 
transform analysis of vibration. The possibility of the application of neural networks to detect bearing faults was presented. The quality of bearing 
faults detection and identification methods was tested experimentally. The experiments have been conducted on induction motors with bearing 
faults. The correctness of the proposed methods has been confirmed by satisfactory tests results.  
  
Streszczenie. W pracy przedstawiono metodę monitorowania stanu łożysk tocznych silników indukcyjnych opartą na analizie falkowej. Omówiono 
dyskretną transformatę falkową oraz jej uogólnienie w postaci pełnego przekształcenia falkowego. Przedstawiono możliwość zastosowanie sieci 
neuronowych do wykrywania uszkodzeń łożysk tocznych. Eksperymentalnie sprawdzono możliwość wykrywania oraz identyfikowania uszkodzeń 
poszczególnych elementów konstrukcyjnych łożysk. Przedstawiono przykładowe wyniki badań laboratoryjnych. Dokonano oceny skuteczności 
wykrywania uszkodzeń łożysk tocznych w silnikach indukcyjnych przy wykorzystaniu analizy falkowej przyspieszenia drgań oraz sieci neuronowych. 
(Zastosowanie analizy falkowej i sieci neuronowych do diagnostyki łożysk tocznych silników indukcyjnych) 
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Introduction 
 The non-stationary character of the available diagnostic 
signals results in the fact that in recent years wavelet 
analysis has been used more and more frequently used to 
detect fault symptoms in induction motors. The approach 
assumes that the diagnostic signal in the time domain can 
be decomposed to components of various time windows 
and various frequency bands, and the information obtained 
in this way can be presented in a time-scale domain. On 
account of the character of the frequency response, the 
approach is effective for both long, low frequency signals 
and short, high frequency signals. The wavelet approach 
has advantage over the traditional Fourier transform in the 
case of the analysis of incoherent and short-impulse signals 
(non-stationary processes). The Fourier transform brings 
the change of signal representation from the time domain to 
the frequency domain, which results in a loss of time 
information and in consequence interpretation difficulties. 
The wavelet transform is free from this disadvantage as the 
signal it represents is shifted and rescaled in relation to the 
so called wavelet matrix. This allows for signal frequency 
information analysis during its development in time. The 
ability to represent the signal simultaneously in the time and 
frequency domains is a very important advantage of 
wavelet transform [1], [2].  
 It turns out that non-stationary signals with sharp 
changes may be easier recognized when an irregular 
wavelet is used than in decomposition to regular sinusoids 
[3]. This is why the choice of appropriate type of wavelet is 
so important when the wavelet analysis is used. Currently 
the most commonly used wavelet in the diagnostics of 
induction motors is the Daubechies wavelet [4], [5], [6].  
 The article presents the results of the application of the 
wavelet analysis of vibration acceleration in detection of 
rolling bearing faults in mains-electricity powered induction 
motors. Wavelet analysis algorithms, available in the 
LabVIEW programming environment, were used in the 
research. In addition the article presents the possibility of 
using neural networks, based on the information obtained 
from the wavelet analysis in rolling bearings fault detection. 
 
Wavelet analysis – basic information 
 Continuous Wavelet Transform (CWT) is defined by the 
following equation [1]:  
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where: a,bR i a0.  
 In the case of continuous wavelet transform, it is 
assumed that the scale coefficient a and the displacement 
coefficient b are continuous functions. When the transform 
parameters are discreet functions, transformation (1) 
describes the so called Discrete Wavelet Transform (DWT). 
Since it is assumed that the scale coefficient a and the 
displacement coefficient b change at multiplicity 2, 
displacement (1) takes the following form [2]: 
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(4)     knn jj
jk   22 2/    

It is assumed that: Tn   – signal duration time x(t), T – 
signal sampling time x(t), N – number of samples defined by 
wavelet occurrence  limits jk(n).  
 The discrete wavelet transform allows to divide the input 
signal x(t) into two components, whose frequency bands 
occupy half of the band signal x(t). The components are 
obtained by signal filtration with a low-pass filter and a high-
pass filter respectively as well as a signal re-sampling 
operation, selecting only even samples, i.e. downsampling. 
The output signal on the low-pass filter is an approximant, 
and the output signal on the high-pass filter is a detail – it 
contains the details which complement the approximant. 
The approximants are the elements of signal x(t) – high 
scale and low frequency, while the details are the elements 
of low scale and high frequency. The decomposition 
process can be repeated to decompose the subsequent 
signal approximants into an approximant and a detail. Then 
the process is called a multilevel decomposition. The 
generalisation of this multi-level decomposition is a 
complete signal decomposition in which in the subsequent 
steps not only the subsequent signal approximants are 
filtered but also its details.   



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 2b/2013                                                                                      125 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. An example of the complete third level wavelet decomposition of vibration signal. Dark background – example of an incomplete 
wavelet decomposition tree  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Sample FFT spectra of vibration acceleration (in the box) and discreet wavelet transform up to the fifth and sixth decomposition level 
for an undamaged bearing and for a bearing with a damaged outer race  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Sample FFT spectra of vibration acceleration (in the box), discreet wavelet transform and complete discreet wavelet transform as 
well as timing of the selected knots from the eighth  level decomposition for an undamaged bearing and for a bearing with a damaged outer 
race  
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 Figure 1 presents an example of the complete third level 
signal decomposition. Dark background was used to mark a 
sample incomplete wavelet decomposition tree of signal 
vibration (also third level). The multilevel decomposition 
process can be continued until a single sample is obtained, 
and in the case of images – a single pixel. Signal 
decomposition makes it possible to analyse selected 
frequency ranges which are responsible for particular 
decomposition tree knots. 
 
Laboratory research results 
 The laboratory research was conducted on mains-
electricity powered Sh-90L-4 motor, made by INDUKTA,  
with 6205 2Z type rolling bearings with an artificially 
modelled ball, inner and outer bearing race defects. The 
measurements were carried out using an industrial 
computer NI PXI 8186 equipped with an industrial card 
NI PXI 4472. Diagnostic signal acquisition measurement 
data analysis was conducted using a virtual tool developed 
in the LabView environment. Vibration measurements were 
conducted using a single axis accelerometer, M622B01 
type, made by IMI SENSORS, it was located in the motor 
bearing cover (axis direction vibration measurements). The 
signal was measured by 12.8kS/s sampling at fixed time –  
10s, which allowed to obtain 0÷6.4kHz band spectrum, 
0.1Hz resolution.  
 Vibration acceleration signal underwent wavelet 
analysis. The selection of decomposition level depended on 
the intention to show characteristic bearing defect 
frequencies. In the case of the discreet wavelet transform, 
the analysis was performed at the fifth and sixth  level of 
decomposition. The obtained approximant and detail band 
width at the sixth level decomposition was 100Hz, and at 
the fifth level it was 200Hz. This made it possible to show 
defect frequencies in bandwidths not higher than 400Hz. In 
the case of complete wavelet transformation, the analysis 
was conducted at the eight decomposition level and 25Hz 
frequency band was obtained. Such a narrow band 
facilitates isolating characteristic defect frequencies. Figure 
2  presents sample results obtained in discreet wavelet 
transformation of vibration acceleration of a motor operating 
under rated load with an outer bearing race fault. 
 The results summary presents FFT spectra of 
approximants and details for the fifth and sixth level 
decomposition. Additionally in the box there is the FFT 
analysis of motor vibrations in the case of an undamaged 
and damaged bearing. The arrows show characteristic 
defect frequencies. The comparison of the wavelet 
transform spectrum with the accelerated vibration spectrum 
allows to notice that the characteristic defect frequencies 
have much larger amplitudes in wavelet transform. 
Additionally, except for basic components kfbz, one can also 
notice the undesired frequency of component 5fbz.  
 The occurrence of undesired frequencies in the wavelet 
analysis results from overlapping filter bands [3], [6]. 
Unfortunately the applied filters were not ideal, in 
consequence they have certain goodness in the barrier 
band depending on filter order. Undesired frequencies 
occur when a very large amplitude frequency occurs near 
the border of the neighbouring frequency range (of an 
approximant or a detail).  
 In the case of a complete wavelet transform, the 
analysis was carried out at the eighth decomposition level. 
A detailed analysis of eighth level knot signals allowed to 
choose the ones which best reflected the effects of the 
damaged outer bearing race (Fig. 3). Analogically to the 
discreet wavelet transform in the box, the classical FFT 
analysis of vibration acceleration is presented  with arrows 
indicating characteristic defect frequencies. Additionally 

there are signal timings at selected knots. This allowed to 
show the influence of a bearing defect on vibration 
acceleration at a given knot. In the case of a complete 
wavelet transform, the amplitudes of characteristic 
frequencies are also several times larger than the ones 
obtained in the classical FFT analysis of vibration 
acceleration. At selected knots it is possible to find 
characteristic defect frequencies showing that there is a 
fault of a bearing construction element.  
 
Neural detectors of rolling bearings 
 The usefulness of the information obtained from the 
wavelet analysis of vibration acceleration in the construction 
of a neural fault detector of rolling bearings has been 
checked. On the basis of the assessment of the obtained 
results, it was possible to select the knots which showed 
symptoms of rolling elements, outer and inner race faults. 
Figure 4 presents a sample structure of the tested neural 
detector. The effective value of signal at a given knot was 
selected as the input data of the neural detector 
(nonlinearities, which occur at the limits of signal, were 
removed as they are a disadvantageous consequence of 
wavelet transform). Additionally, to take into account the 
load changes, the input vector was expanded by rotational 
frequency fr. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The structure of a neural detector for rolling bearing 
construction faults in mains-electricity powered induction motors 
based on information obtained from wavelet analysis of vibration 
acceleration  
 
 The neural detector’s task is finding a damaged 
construction element of a bearing. At network output there 
is information 0 for an undamaged bearing, 1 for a 
damaged ball, 2 for a damaged outer race and 3 for a 
damaged inner race. The output layer consists of only one 
output neuron. Data from two different measurement series 
were selected for neural network learning while the third 
measurement series was tested. Each series consisted of 
10 measurements for an undamaged bearing, a bearing 
with one damaged ball, with damaged outer race (the outer 
race was cut and there was a two-centimetre long surface 
damage) and inner race (it was cut and there was a two-
centimetre long surface damage). The input vector of neural 
network learning consisted of 120 elements, and the testing 
vector of 60 elements. All measurement series were carried 
out on the same group of bearings. To average the results 
of the effectiveness of the neural detector of rolling bearings 
11 series of learning and testing were carried out.  
 The effectiveness summary of the tested neural 
detectors (Table 1) shows that all tested structures are 
characterised by high average effectiveness at the level of 
about 98%. Even the lowest effectiveness, obtained for 
structure 7-3-1 was about 92%. 
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Table 1. Detection effectiveness of selected rolling bearings 
construction defects based on information obtained from wavelet 
analysis of vibration acceleration 

Effectiveness of 11 subsequent 
learning and testing series % 

Neural network structure  

(7-3-1) (7-4-1) (7-5-1) 

Average  97.6 99.8 98.5 

Lowest  91.7 98.3 95.0 

Highest  100.0 100.0 100.0 

 
 The operation of a neural detector with three neurons at 
the output layer was tested too. The advantage of this 
structure over a network with one output neuron, is the 
possibility of indicating a few faults. In the research the 
output vectors used in the previous solution were applied. 
At each of the output neurons there can be information 0 for 
an undamaged element and 1 for a damaged element. 
Figure 5 presents such a neural network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Structure of a neural detector with three neurons at the 
output layer based on wavelet analysis information 
 
Table 2. Detection effectiveness of selected rolling bearings 
construction defects based on information obtained from wavelet 
analysis of vibration acceleration 

Effectiveness of 11 subsequent 
learning and testing series % 

Neural network structure  

(7-3-3) (7-4-3) (7-5-3) 

Average  100.0 99.8 99.8 

Lowest  100.0 98.3 98.3 

Highest  100.0 100.0 100.0 

 
 The summary detection effectiveness for selected 
construction damages of rolling bearings detectors with 
three neurons at the output layer is presented in table 2. 
The obtained results show that such a detectors is very 
efficient in determining the type of damaged construction 
element of a rolling bearing. Only in very few cases errors 
occurred.  
 
Summary  
 In the monitoring processes of rolling bearings 
effectiveness the significance of methods based on time-

frequency transforms is growing. Especially the methods 
based on wavelet analysis are implemented very 
intensively. The presented selected research results 
confirmed high effectiveness of wavelet  analysis in the 
detection and identification of construction faults of rolling 
bearings. This refers to both partial and complete wavelet 
packet analysis.  
 The presented examples show that the information 
obtained from wavelet analysis can be directly used to 
monitor characteristic frequencies in approximants and 
details or indirectly in trained neural networks. It was shown 
that perceptron neural networks based on information 
obtained from wavelet analysis of vibration acceleration are 
highly effective in the detection of rolling bearings 
construction faults. Moreover, even relatively small neural 
networks structures ensure high precision in the detection 
of the type of a bearing fault.  
 On the basis of the conducted research it can be 
concluded that the detectors of bearing faults based on 
artificial neural networks allow on-line monitoring of rolling 
bearings condition and can be an additional, convenient, 
diagnostic tool.  
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