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Abstract. Optical fibre line with polarization scramblers is modelled as a time-variant linear system. The formula for time varying impulse response 
of such a system is derived and relations to PMD and to parameters of scramblers control are shown. One possible application of the time varying 
impulse response is considered and illustrated with results of simulations.  
 
Streszczenie. Linia światłowodowa ze skramblerami polaryzacji została zamodelowana jako zmienny w czasie system liniowy. Wyprowadzono 
zależności na zmienną w czasie odpowiedź impulsową i powiązano jej parametry z PMD linii oraz z parametrami sygnałów sterujących 
skramblerami. Przedstawiono i zilustrowano wynikami symulacji jedno z możliwych zastosowań odpowiedzi impulsowej. – Zmienna w czasie 
odpowiedź impulsowa jednomodowej linii światłowodowej ze skramblerami polaryzacji reprezentująca pierwszorzędowe efekty PMD 
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Introduction 
 Optical fibers suffer from polarization mode dispersion 
(PMD) which affects capability of links using using On-Off-
Keying (OOK) signalling to achieve transmission capacity 
exceeding 10Gbps per wavelenght channel [1]. A number of 
methods were developed to combat the effects of PMD [2]. 
One case of practical interest is the link with burried or 
undersea cables in which temporal variations of  PMD are 
relatively slow i.e. PMD can be static (“frozen”) for days or 
even months [3]. Slow changes of PMD result in long 
lasting link outages. For a link of such type the technique 
using polarization scrambling distributed along the link span 
in combination with proper Forward Error Correction (FEC) 
was shown a method of choice [2]. In this method “frozen” 
PMD becomes time-varying which potentially shortens time 
intervals of unacceptably high signal deterioration. Short 
error bursts can be corrected with the use of an appropriate 
FEC which potentially converts an inoperable link into a fully 
functional low bit error rate (BER) one. 

Theoretically, this technique is effective provided each 
polarization scrambler uniformly distributes it’s output states 
of polarization (SOP) on the Poincare sphere within each 
data transmission frame [4]. This would require scrambling 
with unrealistic infinite speed. In practical realizations a 
question arises on how to control the scramblers with real 
world signals to satisfy the conditions that are imposed by 
the ability of the FEC to correct error bursts. One way of 
analysing this aspect can be to inspect the time varying 
impulse response (TVIR) of the polarization scrambled fibre 
optic link. In this paper such idea is developed and 
prospects for its use are shown through examples. Analytic 
model which describes the TVIR of a fibre optic polarization 
scrambled line as a function of parameters of fibre 
segments, of control signals, etc. can be useful in design of 
links with PMD affected fibres as well as computer 
simulations.  
 
Linear time-variant model of optical fibre line with 
polarization scramblers 
 Generally, silica fibres are nonlinear media however, 
under certain conditions assumption of approximate 
linearity holds [5] which allows to model such a fibre as a 
linear system. Such an assumption will be made for the 
following text. 
 A single mode fibre supports two polarization modes. 
The input and output of the system which is the model of a 
single mode fibre can be considered 2-dimensional vectors 

with components describing the polarization orthogonal 
constituents of light. Optical signals propagating in fibre 
optic telecommunication links can be regarded modulated 
monochromatic polarized waves [6]. Such a wave can be 
described by 2-dimensional complex envelope vector 
 tŝ defined by: 
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which is related to the wave s(t) by: 
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 Here, sx(t) and sy(t) are polarization components of the 
wave s(t) while pairs (ax(t),x(t)) and (ay(t),y(t)) represent 
their envelopes and phases. The 0 is the angular 
frequency of the optical carrier. 
 The paper analyses the case in which polarization 
scramblers are inserted at discrete points of a fibre link in 
order to animate PMD. Time varying polarization mixing 
occurs in fibres in the effect of scrambling. Thus, TVIR of 
such a link shows temporal variations and the link can be 
regarded a time variant linear system. Its’ output signal is 
related to the input signal via [7]: 
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 In (3) v(t) and w(t) are 2-dimensional signals of the form  
described by (2) which correspond to the input and output 
waves, respectively. The h(t,t2) is the time varying impulse 
response (TVIR) of the system: 
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 The scalar components hij(t,t2) represent in time domain 
the transfer characteristics of the system with respect to the 
two polarization modes. The t parameter is the “running 
time” characterizing the time flow in the system while the t2 
parameter is the “lag”, the delay with respect to the running 
time. 
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In general, the components of h(t,t2) take account for all 
factors affecting propagation of polarization modes: 
polarization mode dispersion, other types of dispersion 
(polarization independent), polarization dependent loss 
(PDL), and time varying polarization mixing due to 
scrambling. 
 Considering that the input and output signals of the 
system of interest are modulated sinusoids it is more 
convenient to express the input-output relation in terms of 
their complex envelopes. The relation equivalent to (3) is 
given by [7]: 
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where: )(ˆ tv and  tŵ are the complex envelopes (as 

defined by (1)) of the input and output waves, respectively. 

The  2,ˆ tth  is the “baseband” TVIR of the system defined 

as follows: 
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 It will be further referred to as the complex time variant 
impulse response (CTVIR). One shall note that with the 
definition (6) the function h=h(t=const,t2) need not be 
bandpass which is the case of any PMD model.  
 For a system that is a concatenation of a number of time 
variant linear systems the effective CTVIR shall be a linear 
transformation of the CTVIRs of the component systems. 
Let’s limit, for the moment, to a cascade of only two 

systems, each with the corresponding CTVIR  21 ,ˆ tth  and 

 22 ,ˆ tth  (the systems are indexed starting from the input in 

the direction to the output of the cascade). Acording to (5) 
the resultant input-output relation of the cascade of the two 
systems is given by: 
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 The CTVIR  2,ˆ tteh  of the compound system can be 

derived from (7) after (t-t2)=[(t-t2),(t-t2)]
T is put in place of 

)(ˆ tv . This leads to the following formula: 
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 The operator   appearing in (8) denotes the time-
variant convolution generalized to two-dimensional signals 
which is formally defined by the last expression in (8). 
 Generalizing the result in (8) to the case of a cascade of 
any M components one obtains the effective CTVIR: 
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where  2,ˆ ttMh ,  21 ,ˆ ttM h ,...,  21 ,ˆ tth  are the CTVIRs 

of components indexed from the cascade’s input to its’ 
output. 
 
Complex time-variant impulse response of a fibre optic 
line with polarization scramblers 
 
A. Complex time-varying impulse response of a 

cascade of DGD components 
 Let’s start the derivation from an example being a 
cascade of time-invariant components, each with being a 
waveplate with fixed DGD. The well known 22 Jones 
matrix representing a frequency domain transfer function of 

a single component of this type can be rearranged to the 
form: 
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where: U0 and U1 are frequency invariant matrices and  is 
the DGD of the component. PDL is excluded in the 
forthcoming analysis. Under these assumptions the U0 and 
U1 are given by: 
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where:  is a rotation angle of the component’s 
birefringence axes with respect to the X0Y axes. The 
corresponding time-invariant impulse response is as 
follows: 
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 The complex impulse response is obtained through 
multiplying (12) by exp(-j0t) which yields: 
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 For a cascade of N fixed DGD components we get from 
(9) and (13): 
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 In (14)-(15) above: n is the fixed DGD of the n-th 
component in the cascade, d(n,i) is the value of the n-th digit 
of the N-bit binary representation of the index i, and Un,0 and 
Un,1 are the U0 and U1 of the n-th component, respectively. 
 The result in (16) can be easily generalized to a time-
variant case when all DGDs in the cascade are allowed to 
vary with time. From (14) one gets the following expression 
for the CTVIR of a cascade of time-variant DGD 
components: 
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 The first term in (17) represents time delays which the 
complex envelope undergoes due propagation through the 
cascade while the second one describes the associated 
phase shifts of the optical carrier. 
 
B. Complex time-varying impulse response of a 

polarization scrambler 
 There may be a variety of realizations of polarization 
scramblers. In order to rotate polarization of light one of 
following two devices can be utilised: a space rotatable 
waveplate or, a tunable phase shifter, typically stacked in a 
cascade. Polarization scramblers build with the two types of 
components are equivalent. In the following only the 
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polarization scrambler based on tunable phase shifters will 
be considered without loss of generality. 
 A three axis scrambler can be build as a cascade of 
three variable DGD components playing the role of phase 
shifters (at a given optical frequency DGD changes 
manifest as phase shifts to a harmonic wave). Two of them 
shall have the same orientation of their birefringence axes, 
say 0 rad with respect to XOY axes, and the third shall be 
sandwiched between the two and have birefringence axes 
rotated by ¼ . This rule is kept observed while adding extra 
stages to a scrambler. One conclusion from the above 
considerations is that a polarization scrambler, being a 
cascade of variable DGD components, has its CTVIR in 
general described by (17). 
 In the following the (17) will be specialized to express 
CTVIR of an N-stage scrambler (a stage is regarded a 
single phase shifter). For a phase shifter with birefringence 
axes aligned with X0Y axes the matrices U0 and U1 are as 
follows: 
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while for a phase shifter with birefringence axes rotated by 
¼ the matrices are given by: 
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 In (18) and (19) above the upper script ‘s’ lables 
matrices which correspond to the scrambler.  
 Moreover, it shall be noted that for any practical 
scrambler the |(t)| remains in the range of 10-2 
picoseconds which is two orders of magnitude lower than 
DGD of a typical fibre segment. Consequently, in practical 
applications to an excellent approximation the polarization 
scrambling can be modelled with neglected effect of time 
shifting the signal’s  complex envelope: 
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where S(t) represents phase shifts due to polarization 
scrambling: 
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 In typical applications scramblers are driven by 
sinusoidal signals (particularly when fast scrambling, in the 
range of Megahertz, is applied). For an N-stage scrambler 
controlled by sinusoidal signals we have: 
 

(22)

  






 





















12

0

1

0

),( sin)1(exp)(
N

l

N

n
nnn

lnd
i tjjt US

 

 In the above formula n, n are the angular frequency 
and the initial phase of the sinusoidal signal controlling the 
n-the stage of the scrambler and the n is the amplitude of 
this control signal; n= for odd n and n=½ for even n. 
 
C. Complex impulse response of a fibre segment 
 Here, PMD in any fibre segment constituting a fibre line 
with polarization scramblers is considered time-invariant, at 
least in the time scale of interest. Dynamic behaviour of 
such a fibre segment is described by its time-invariant 
complex impulse response. Limiting to the case in which 
modelling PMD in a fibre by the first order model (frequency 

invariant DGD) is sufficient, the frequency domain transfer 
function of a fibre segment as well as its complex impulse 
response function can be described by (10) and (14), 
respectively. Any fibre segment is fully characterized by its 
DGD (denoted as ) and orientation of the principal states of 
polarization (PSPs) described by angle of rotation  with 
respect to XOY axes and phase retardation  between a 
PSP projections onto XOY axes. Under these assumptions 
the matrices U0 and U1 of a fibre are given by: 
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D. Complex time-varying impulse response of a fibre 

optic line with distributed polarization scramblers 
 With the use of (9), (13) and (20) the CTVIR of a 
concatenation of a polarization scrambler followed by a fibre 
segment can be derived as: 
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 The upper script ‘f’ is introduced to differentiate the 
matrices U0 and U1 of a fibre segment from the ones of a 
polarization scrambler.  
 Because (24) has the same form as (13) one can use 
the same reasoning that was used in the sub-section A 
above to draw the conclusion that the formula for the CTVIR 
for a cascade of M fibre segments, each preceded with a 
polarization scrambler, has the general form of (14) with 
time varying Ui factors. The corresponding CTVIR can be 
written as: 
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and i are linear combinations of DGDs of all fibre 
segments calculated according to (15). 
 
E. First order model of complex time-variant impulse 

response of a fibre optic line with polarization 
scramblers 

 The (26) represents effects of all-order PMD of a fibre 
opic line with polarization scramblers. For OOK signalling 
and up to 10Gbps bitrates limitation to first-order effects can 
prove sufficient. According to the first order model of PMD 
the distortion to the propagating wave at any time instance 
can be fully described by differential group delay between 
two particular polarizations called principal states of 
polarization (PSPs) [6]. In order to calculate an arbitrarily 
polarized narrowband light pulse at the output of a 
transmission medium described by the first-order PMD 
model one should translate the polarization of the input 
pulse to the two input PSP components and then apply to 
them the g1=½ and g2=-½ group delays. The output 
signal is the composition of the two output PSPs. If the 
output polarization is expressed in the same coordinate 
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system which is used to describe the input polarization the 
“first-order” complex impulse response of a time invariant 
medium can be given by (11) and (23).  
 In case of fibre optic line with polarization scramblers 
the differential group delay  as well as elements of the 
matrices U0 and U1 (related to input PSPs) are time varying 
in tact with scrambling signals. So, the “first-order” CTVIR of 
the entire fibre optic line with scramblers, equivalent to (26), 
can be expressed as: 
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 To find the formula for the time varying DGD and the 
time varying input PSPs of the system represented by (26) 
one can consider time variant Jones matrix which can 
describe temporal variation of spectral transmission 
properties of the system provided the variation is slow 
compared to the optical bandwidth. This is the typical case 
in scrambling as frequencies of scrambling signals are in 
Megahertz or tens of Megahertz range while the optical 
bandwidths of interest are at least 10 GHz.  
 The time variant Jones matrix is the Fourier transform in 
the domain of t2 of the time variant impulse response he(t,t2) 
related to the CTVIR by: 
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 From (26) and (29) we have: 
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 Note, that Ue(t,) can be expressed in the Caley/Klein 
form which means that only two elements of this matrix: 
u11(t,) and u12(t,) are independent [6]. From (30) we can 
derive both elements: 
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as well as their frequency derivatives: 
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which all will be used in calculation of (t) and parameters of 
the PSPs. 
 The time variant DGD is given by [6]: 
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where the asterisk means complex conjugation. 
  
 The time varying parameters of the input PSPs 
necessary for (28) can be derived from the components of 
the output PMD vector (representing PMD in the Stokes 
space). Let s(t)=[s1(t),s2(t),s3(t)]

T be the time variant PMD 
vector. The vector components are given by [6]: 
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 The output PSP parameters: o - the alignment angle of 
PSPs to the coordinate system, o - the phase shift between 
the PSPs, can be calculated from (33) and (34) as shown 
below: 

(35)  
   

 
      tjstst

t

ts
t

o

o

32

1

arg

arccos
2

1

















, 

 

where arg(z) returns the argument of a complex number z. 
The input PSPs with parameters: i - the alignment angle of 
PSPs to the coordinate system, i - the phase shift between 
the PSPs, are related to the output PSPs by the following 
formulas: 
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 In some applications utilising the first order model of 
PMD the input PMD vector in(t) (in Stokes space) is used. 
Combining the results in (33) and (36) can provide the 
required quantity: 
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 The formula (28) can be further simplified if applications 
of CTVIR are limited to direct detection systems. In such 
systems the received signal r(t) is proportional to the 
envelope of the optical signal (momentary optical power). 
This in turn is related to the complex envelope  tŵ by: 
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where: 1 and 2 denote two orthogonal arbitrary 
polarizations. It shall be noticed, that the output state of 
polarization does not affect the output envelope of a 
received wave unless polarization sensitive detector is 
used, which is uncommon in direct detection systems. 
Consequently in these applications, the CTVIR of the 
system can be modified in such a way that splitting output 
PSPs into the polarizations aligned with the axes of the 
arbitrary coordinate system is omitted. This shall be 
reflected by modification of the matrices U0 and U1 in (28). 
Now, they shall be given by: 
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where: i and i have the meaning as explained in (36). The 
(PSP) upperscript denotes alignment of output polarizations 
to PSPs. When (28) with U0 and U1 defined by (39) are 
used in (5) the resultant output complex envelope can be 
expressed as: 
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 Having looked onto (38) one can deduce that in (28) the 
exp[j0(t)] and exp[-j0(t)] components can be dropped if 
(28) shall be used only to calculate output envelope. Hence, 
for the purpose of applications in direct detection systems 
the first order CTVIR can be simplified to: 
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 The above form of CTVIR can be used in calculations of 
received signal in a direct detection system using a fibre 
optic line with polarization scramblers. 
 
Applications 
 One important application of CTVIR is calculation of 
received signal in direct detection OOK systems in order to 
find temporal variation of BER due to temporal changes in 
the transmission medium. Consequently, CTVIR can prove 
useful in analysis of a system of this type which uses fibre 
optic line with polarization scramblers.  
 The probability of erroneous detection of a bit is given 
by: 
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for conditional probalility of detecting 1 instead of 0 and vice 
versa, respectively. In the above formulas: g(x,) is the 
distribution of noise in the receiver front-end, L is the RMS 
noise when receiving 0, H is is the RMS noise when 
receiving 1. The values of the signal-to-noise ratio can be 
calculated according to: 
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where:  takes L or H, as appropriate, r(td) is the received 
bit pulse at detection time instance (typically at the peak of 
the pulse), rth is the detection threshold.  
 In a medium with time variant PMD the transmitted 
pulses arrive at the medium end delayed by a time variant 
amount t(t). The detection time instances cannot then 
occur simply at kT for k-th bit, where T is the bit slot duration 
(pulses are assumed centred in the bit slots). The receivers 
monitor variations of the delay and sample received signal 
at the time instances when it really reaches maximum. So, 
for practical receivers the td shall be expressed: 
 

(44)  )()( kTtkTttkTt kdkd  . 
 

 In a fibre optic line with scramblers the t(t) changes 
enough slowly to justify approximation made on the right in 
the above formula. The t(t) can be easily calculated if PMD 
can be approximated by the first order model. It is given by 
[6]: 
 

(45)  inin kTkTt pτ  )(5.0)( . 
 

where: in(kT) is the input PMD vector at the time instance 
kT, pin is the polarization vector of the input light (both 
vectors are in Stokes space), the dot denotes vector scalar 
product. The above quantities can be used to calculate the 
RMS pulse width spread w [8]: 

(46)    21)(5.0 ininw tτ pτ  . 
 

 The Fig. 1 illustrates effects of scrambling on temporal 
variations of bit error probalility (Fig 1a). The received signal 
sampled at detection time instances is shown in the Fig. 1c.  
 The PMD effects were calculated from the presented 
model. For the purpose of this illustration L=H and 
SNRL=SNRH (thermal noise limited receiver) were assumed. 

The targeted BER was 10-12. 1.5 dB margin for power 
penalty was added which system designers used to allocate 
in order to provide acceptable probability of outage due to 
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Fig.1. a) log of bit error probability vs time; the blue line marks 
targetted BER; b) the rms pulse width spread vs time; c) 
received signal samples vs time; d) log of bit error probability vs 
time after margin increased to model 4dB code gain 
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PMD fluctuations. A 5 segment fibre line was simulated, 
each segment with equal DGD value of 7.5ps. This 
corresponded to the maximum compound DGD 37.5ps 
which was 37.5% of the bit signalling interval (100 ps). No 
PDL was assumed. Each fibre segment was preceded by a 
3-axis polarization scrambler driven by sinusoidal signals. 
The frequencies of the signals driving polarization rotators 
were set to 50, 51 and 52 MHz – in the first scrambler, 53, 
54 and 55 in the second one, and so on with the last 
scrambler driven by 62, 63 and 64 MHz. The modulation 
format was RZ with 33% duty cycle at 10Gbps data 
transmission speed.  

 In the Fig. 1a shots of unacceptably high bit error 
probability are apparently visible which reveals insufficient 
margin. The shots maxima correspond to the maxima in the 
RMS pulse width spread curve (Fig. 1b). The Fig. 2 
exemplifies pulse distortions which are effected due to 
scrambling. The three plots relate to the three local maxima 
of the pulse RMS pulse width pointed by arrows in the Fig. 
1b. The plots evidence that the distortions do not only 
depend on instantaneous DGD but the viariation of power 
split between the two orthogonal polarizations also matters. 
 The shots can be cleared by increasing the power 
margin. Alternatively, the equivalent effect can be obtained 
if a forward error correction code (FEC) is applied. A rough 
estimation of the effect of using FEC can be based on the 
code’s gain figure. Increasing the original signal-to-noise 

ratio by code gain can give approximate bit error probability 
which could result if FEC is used. For example, according to 
this approximation the targeted BER of 10-12 could be 
achieved in the timescale as in the Fig. 1 if the code gain 
were 4 dB, which is illustrated in the Fig. 1d. More thorough 
estimation may account for grouping of errors within the 
shots and FEC’s capability to correct burts errors. Hence, 
what FEC should be applied to reduce the probability to the 
targeted level can be revealed by extensive inspection of 
the bit error probability versus time. Calculation of the 
received signal at each bit slot would require large 
workload. The amount of calculations could be reduced if 
the received signal is computed only at those time 
instances when the PMD resultant pulse spread reaches 
maxima. The pulse spread curve exhibits relatively slow 
(directly related to the speed of scrambling) temporal 
dependence what suggests that it can be possibly quickly 
searched for maxima even over long time scopes. A 
gradient based variable step with quadratic approximation 
search method shown approximately 12-fold workload 
reduction. The maxima locations found by the algorithm are 
marked by spikes in the Fig. 1b.  
 
Conclusions 
 A complex time-variant impulse response - CTVIR can 
be considered a tool for analysis of temporal behaviour of a 
fibre optic transmission line with polarization scramblers 
driven by real world signals. The CTVIR variant that 
accounts only for the first-order PMD effects is 
advantageous in such analysis as it involves only three real 
valued parameters that influence the output signal. The 
model can facilitate a search for FEC required to clear the 
bit error probability ripple resulted from scrambling.  
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Fig.2. Received signal at three different time instances when 
pulse spread reaches maxima marked by arrows in the Fig 1b. 
Time shift to the origin indicated below each plot. 

r(t) 

a) 

b) 

c) 

t [ps] 

r(t) 

t [ps] 

t [ps] 

r(t) 

+ 5,800 ps

+ 16,800 ps

+ 36,400 ps


