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Abstract  In this paper two-dimensional dielectrophoresis is described. First electric field distribution in particle and surrounding fluid is calculated 
and next dipole moment and surface charge density is derived. These values are fundamental for force calculation in two-dimensional 
dielectrophoresis and in simulation velocity distribution in interdigitated electrodes. 
 
Streszczenie. W tej publikacji omówiono zjawisko dielektroforezy w dwóch wymiarach. Najpierw odpowiednie równania pole zostaną rozwiązane 
analityczni, a następnie zostaną wyprowadzone wzory na wartość momentu dipolowego cząsteczki zanurzonej w płynie dielektrycznym. Wielkości te 
mają podstawowe znaczenie w obliczaniu sił i momentów działających na cząsteczkę oraz na wyznaczanie rozkładu prędkości w urządzeniach do 
separacji cząstek. (Obliczanie sił w urządzeniach do separacji cząstek) 
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Introduction 
 Despite this growing importance of dielectrophoresis is, 
little attention has been paid to the theoretical and analysis. 
Although dielectrophoresis is only possible in strong 
divergent electric fields, theoretical analyses are usually 
based on equations derived from uniform field behavior. 
The calculation of DEP force acting on particle has been 
reported as a difficult task unless in many cases simplifying 
assumptions and very simple geometries are considered 
and is usually based on the dipole approximation first 
introduced by Pohl. Pohl derived an expression for the 
dielectrophoretic force acting on cells by modeling the cell 
as a solid spherical dielectric particle placed in a fluid 
medium. A more realistic geometries for biological particles 
has been used by a number of scientists, which includes a 
spherical dielectric shell employed usually for the dielectric 
properties of the plasma-membrane. 
 It is well-known that an electrically neutral but 
polarizable particle, suspended in a dielectric or conducting 
fluid, under the influence of a non-uniform electric field 
tends to move towards the region of highest electric field 
intensity. This migration caused by dielectric polarization 
forces is discovered by [1] and named as dielectrophoresis. 
During the past years dielectrophoresis has proved to be of 
very important in many applications such as, for example, 
industrial filtration of liquids, dielectric solid - solid 
separations and biological analyses. 
 There are many reasons for studying a behavior of 
particles and fluid globules immersed fluid suspension and 
placed in electric fields. Among different the chemical 
engineering applications [2] are the determination of forces 
acting on droplets exiting electrospray nozzles, the 
enhancement of heat and mass transfer in emulsions by the 
imposition of electric fields [3], electrically driven separation 
of particles techniques, dielectrophoretic and electro-
rotational manipulation of living and death cells, and the 
control of electrorheological fluids. 
 Dielectrophoretic (DEP) traps use the force acting on an 
induced multipole with a nonuniform steady or alternating 
electric field to create electric forces that will change 
position of particles. DEP forces can trap different kind of 
particles on or between special electrodes – among others 
including micron and submicron polymer beads, cells, 
viruses, and bacteria. With the appropriate electrode 
geometry design and careful control of the potentials 
conditions, single particle trapping can be attained. 
 The Finite Element Method (FEM) is useful method for 
analyzing electromagnetic fields in devices, because these 
can model complicated geometries and non-linear electric 
properties with relatively short computing time. In spite of 
these advantages, in many papers have been proved that 

obtaining an accurate force or torque from FEM 
computation can be inaccurate, particularly when geometry 
is enough complex, such as in the case of dielectrophoretic 
traps with multiple particles. Unfortunately, force and torque 
calculations are influenced by the approximate nature of the 
discretisation used in FEM meshes.  

Equations describing the electromagnetic field 
 Field equations for potential distribution in harmonic 
case. It is assumed that frequency and conductivities are 
sufficiently small and therefore magnetic part of 
electromagnetic field can be neglect. Let us start with first 
Maxwell equation: 
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Taking divergence of both sides of the above equation and 
utilizing relations J  E, D  E and E  −V we have 
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where σ is conductivity and ε permittivity. Assuming that we 
have sinusoidal excitation and steady state potential has 
the value 
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where ෠ܸ  is the complex amplitude of the potential. 
Introducing this relation to (2) we get 
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We can assume that ෠ܸ 	hes	real	and	imaginary	parts 
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This gives as two equations for real and imaginary parts of 
the potential: 
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Electric field strength also has real and imaginary parts 
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On the other hand 
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what gives as relations 
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The second square of the modulus of the vector Ê  can be 
derived as 
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Boundary conditions in time domain are given by 
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where n12 is a unit vector perpendicular to boundary and 
directed from domain 1 to domain 2. Taking into account 
relations between current densities, flux densities and 
potential and taking symbolic transformation we get 

(14) 1 2
1 2

ˆ ˆ
ˆ ˆ

V V

r r
 
 


 

  

where symbolic dielectric permeabilities have values: 
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Force acting on single particle 
 Let us calculate the mean value of force acting on 
particle when all fields are sinusoidal in steady state. In time 
domain the force is given by 
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Polarization vector in complex domain is given by formula 
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Likewise for electric field we can write 

(18)  m m

1 ˆ ˆ( )
2

j t j tt e e  E E E   

Thus, force acting on particle in time domain has the value 
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Integral the first and last term over one time period T is 
equal zero, so 
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Because equivalent dipole moment of single particle in two 
dimensions is given by 
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and dividing Clausius-Mosotti coefficient ܭ෡ into real and 
imaginary part, we get the total force acting on particle in 
two dimensions. Electric field is considered as root mean 
square value.  
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Real and imaginary parts of the Clausius-Mosotti coefficient 
are given by: 

(23)  1 2 R I
ˆ ˆ ˆ,K K jK      

(24) 
   
   

2 2 2 2 2
2 1 2 1

R 2 22
2 1 2 1

K
    

    

  


  
  

(25) 
 

   
2 1 1 2

I 2 22
2 1 2 1

2
K

    

    




  
  

where all permittivities are equal w0.  

Results 
 The simulated chamber is modeled as a two-
dimensional model, where we need, because of longitudinal 
symmetry, to consider only a single pair of electrodes, one 
with positive Vz = 10 V and one with zero voltage. The 
extension of the interdigitated electrode array beyond the 
considered region can be simulated by applying periodic 
boundary conditions to the left and right of the problem 
boundary model. Figure 1 shows a cross-sectional 
geometry of the canal, which includes the substrate and 
channel covers, the interdigitated electrodes and a fluid. 
The finite element calculations with triangle elements was 
used for following geometrical dimensions: A-B = 60 μm, 
A-C = 160 μm, the electrode dimensions are a = 40 μm, b 
= 40 μm, h = 4 μm. High of the chamber with fluid is 45 μm. 
Cylindrical particle has radius r1 = 3 μm and relative 
permittivity of the particle amounts ε2 = 160. All forces are 
calculated for particle 1 meter long in y direction. 
 

 
Fig.1. Single electrode arrangement in dielectrophoretic trap. 
 

The conducting fluid, where particle moves, has relative 
permittivity ε1 = 80 and angular frequency of the source has 
value ω = 30·103 rd/s. 

After solution of the Laplace equations in complex 
domain (6) and (7) for potential, electric field was 
calculated. Next modulus of the electric field according to 
equation (11) and its gradient were obtained. This allows us 
to compute the force acting on dielectric particle immersed 

particle

FDEP

substrate
A

B

C

D

a a

b
h 0.5b

periodic
boundary
conditions

periodic
boundary
conditions

E E

V

n

�

�

V=V
z V = 0

�
�

�
�

( , )x yp p



264                                                                              PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 3a/2013 

in dielectric and conducting fluid. The particle itself in two-
dimensional computations has cylindrical form and is placed 
parallel to z axes, that is perpendicular to figure 1 plane.  
 Dependence of the real part of the Clausius-Mosotti 
 coefficient from frequency, is depicted in Fig.2. It was 
calculated according equation (24). The sign of this 
constant depends from relative permittivity, as it is shown in 
figure below. For enough great value of this coefficient, 
Clausius-Mosotti coefficient changes his sign, what means 
that force acting on particle also changes its direction. 

 
Fig.2. Dependence of the real part of the Clausius-Mosotti 
coefficient from frequency. Relative permittivity of particle is as 
parameter. 

 
Fig.3. Dependence of the x-component of the force F acting on 
particle from fluid conductivity. Conductivity of the particle in S/m is 
a parameter. 
 

Next dependence of force acting on particle according 
with equation (22) was for different fluid and particle 
parameters calculated. The second part of this equation can 
be neglected, because it is in this case equal zero. In Fig. 3 
dependence of the x-component of the force F acting on 
particle from fluid conductivity is shown. 
 For values of the conductivity σ1 higher then 1S/m,. the 
x-component of the force becomes negative. Generally this 
force diminishes with particle conductivity. In Fig. 4 the y-
component of the total force is shown. For the values of the 
particle conductivity greater than 0.05 S/m, this component 
is always negative, that is it is directed to the trap. 

 
Fig.4. Dependence of the x-component of the force F acting on 
particle from fluid conductivity. Conductivity of the particle in S/m is 
a parameter.. 

Conclusions 
 In this article, cylindrical particle in uniform electric field 
perpendicular to the particle was considered. The Clasius-
Mosotti coefficient allows us to deduce the direction of the 
total force component acting on particle and to investigate 
the influence of different fluids on particle parameters on the 
magnitude and the direction of the resulting force. 
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