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Abstract. One of the main problems with speech recognition for robots is noise. In this paper we propose two methods to enhance the robustness of 
continuous speech recognition in noisy environment. We show that the accuracy of recognition can be improved by better weighting the language 
model in the decision process. The second proposed method is based on language model adaptation. The experiments showed that both proposed 
techniques improve speech recognition accuracy by approximately 2% .  
 
Streszczenie. W artykule przedstawiono dwie metody zwiększenia odporności na zakłócenia i skuteczności rozpoznawania mowy w zaszumionym 
otoczeniu. Wykazano, że odpowiednie dobranie współczynników wagowych w procesie decyzyjnym dla modelu języka zwiększa precyzję 
rozpoznawania dźwięków. Druga metoda opiera się na adaptacji modelu języka. Badania eksperymentalne wykazały, że obydwie metody 
zwiększają skuteczność rozpoznania mowy o około 2%.  (Rozpoznawanie mowy w interakcji z robotem w zaszumionym otoczeniu). 
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Introduction 

In the near future a robot should have capability of 
social interaction with people. Much of efforts in humanoid 
robot technology have been focused on robot locomotion 
aiming at safe walk and behaviours. Research affords were 
mainly devoted to robot vision. Since we are talking about 
humanoid robots, natural interaction between a human and 
a robot is also expected, which includes also the auditory 
function of robot [1, 2, 3]. Little have been done in 
technological development of hearing function of robot. 
Human-robot interaction through voice channel is one of 
key perceptive functions of a robot. Communication in 
natural language rather than in an artificial programming 
language is an advantage, which enables the 
communication with the novice users without a proper 
training and overcome many difficulties with localization.  
 Effective communication with a mobile robot using 
speech is a difficult problem. Information for speech 
recognition engine comes from the microphone array, which 
is exposed to noises in real environment. A lot of sound 
sources harm the speech that should be reliable 
recognized.  Motor noises are inevitably generated. While a 
robot is moving and performing gestures it makes noise 
itself and is expected to recognize human speech. Noise is 
captured with strong power by the robot’s microphones, 
because the noise sources are closer to the microphones 
than the speech source. Ambient noise caused by room 
acoustics usually additionally degrades quality and reliability 
of speech recognition.  
 The aim of this paper is to analyze noise robustness of 
our speech recognition system and to propose approaches 
to enhance the robustness.  The paper is organized as 
follows. Next section reviews the literature. We describe 
large vocabulary continuous speech recognition in noisy 
environment. In this section the theoretical background of 
our idea is given. A detailed description of developed 
recognition system follows. We give the specifications of 
text and speech databases. The experiments in clean and 
noisy environment are described.  Last section concludes 
the paper. 
 
Related work 
 One of the main problems with automatic speech 
recognition (ASR) for robots is noise. To cope with such a 
noisy speech signal [4], noise adaptation techniques such 
as multi-condition training [5] and Maximum-Likelihood 
Linear Regression (MLLR) [6, 7] are commonly used. One 

of the big differences between robot noise and 
environmental noise it that robot noise can easily be 
estimated in advance. Each kind of robot motion or gesture 
performs almost the same noise every time it is performed. 
The noise can be recorded. Having recorded noise, many 
techniques exist to subtract the noise from the input signal. 
In [8] a method is proposed, that is based on three 
techniques, multi-condition training, maximum-likelihood 
linear regression, and missing feature theory. 
 In [9] the robot audition system is described that 
recognizes speech that is contaminated by simultaneous 
speech. The system is based on two key ideas, pre-
processing of ASR and missing feature-theory based 
integration of pre-processing and ASR. Theoretically, more 
than three speakers can be supported, but the performance 
becomes worse. In case of three speakers it was around 
60%.  When assuming that the acoustic environment does 
not change much, ASR with multi-condition trained acoustic 
model tends to work well. As already mentioned, robots 
interact with multiple people under dynamically changing 
environments. Therefore, ASR should work with a single 
acoustic model by adapting it to a current environment. In 
[10] missing feature theory is adopted in a system that 
consist of geometric source separation, post-filtering, 
computation of missing feature mask and missing feature 
theory based ASR. 
 In our research we analyze noise robustness from the 
perspectives of acoustic and language models.  
 
Speech recognition in noise environment 

Speech recognition process consists of two main 
modules, speech pre-processing and speech decoding.  
First, input speech is processed by voice activity detection 
module. It determines the presence or absence of speech in 
input signal. If it fails in noisy environment it is difficult to 
recognize input speech accurately. After a speech segment 
is detected, the speech signal is analyzed to extract the 
useful information for speech recognition. For noisy speech 
recognition mel-scale frequency cepstrum coefficients 
(MFCC) and perceptual linear prediction method (PLP) 
were proved to be effective. Analyzed speech is than 
recognized in decoding process. A search for most 
probable word sequence is carried out using the information 
from acoustic and language models. Acoustic models are 
mostly trained on data, recorded in clean condition. 
Consecutively there is a mismatch between models and 
input features that come from noisy environment.  
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Language model assigns a probability to a sequence of 
words. The assigned probability is calculated based on 
counting short sequences in training data being in most 
cases clean, literal text. Speech in noisy environment differs 
to a great extent from the literal text. In addition to lexical 
words it contains hesitations and disfluencies that carry no 
linguistic information and harm the prediction power of 
language model.  

Many efforts have been made in developing methods for 
noise robust voice activity detection and voice robust 
speech analysis [11].  Much less research was devoted to 
noise robust decoding process. Two types of approaches 
for decoding in noisy environment are analyzed in this 
paper. The first approach is based on noisy channel model. 
The second approach introduces adapted language model. 

The noisy channel model is a framework used by search 
algorithm to find the intended word sequence given the 
acoustic evidence of input speech. It picks the most likely 
word sequence given the observed acoustic evidence. 

(1)   AWPmaxargŴ
w

  

( )AWP  denotes the probability that words  were spoken, 

given that  the acoustic evidence was observed. The well 
known Bayes’ formula allows us to rewrite the probability to 
take into account the acoustic and linguistic knowledge: 

(2)       
 AP

WPWAP
AWP


  

Since the maximization is carried out with the variable 
A  fixed, we can disregard the dominator and use the 

simple product of acoustic probability ( )WAP  and 

language model probability ( )WP . In real systems, it is 
widely known that balancing between acoustic probability 
and language probability is needed to optimize the system 
performance. The typical form of combining the two 
knowledge sources is:  

(3)      nQWPlogWAPlogmaxargŴ
w

-α  

where α  is known as language model weight, Q  is word 

insertion penalty and n  is the number of words in the 
sequence W .  

Both parameters are constants, and optimal values for 
them are not known. Obviously they depend on utilized 
acoustic and language models. We claim that there are also 
some dependence between those two parameters and the 
speech environment. It is natural to think that we need to 
somehow compensate for noisy input speech, i.e. noisy 
acoustic evidence. We see the probability estimate given by 
language model as more reliable estimate than the 
probability given by acoustic model in noisy environment. In 
the experiments we will confirm the correctness of the idea 
by systematic optimization of language model weight. 

Language model assigns the probability to a sequence 
of words using the chain rule. In case of a trigram model it 
is: 

(4)     



n

1i
1i2ii w,wwPWP   

Basic trigram probabilities are estimated by trigram 
frequencies, calculated in very large corpora of training text. 
Since many possible trigrams are never actually 
encountered even in very large corpora, some smoothing 

method is used. Using this approach we get the model of 
general language.  

It is quite common that speech recognition system is 
used in an environment, which can be characterized by 
language in use. In communication with a robot we can 
observe that the language is even more limited (for example 
to instructions given to it). Having characteristic text from 
the target environment, the model of general language can 
be adapted to the target language by interpolation: 

(5)         ;WP1WPWP TG λ-λ   

where  WPG  is a probability estimate given by the model 

of general language, and  WPT  is a probability estimate 

given by the model of target language, and λ  is the 
interpolation coefficient. To build the model of target 
language, characteristic text should be of a reasonable size. 
It can be collected in a WoZ experiment [12]. In this paper 
some additional experiments will be devoted to adapted 
language models. The relation between adapted language 
model and language model weight in noisy environment will 
be analyzed. 

 
Speech recognition system 

The speech recognition system used in these 
experiments is based on Hidden Markov Models (HMM) for 
acoustic modelling and statistical n-grams for language 
modelling. Such system belongs to the more complex ones 
in the area of speech recognition [13]. The basic description 
of speech recognition system is given in this section, for 
further details see [14]. 

The role of feature extraction is to convert the input 
speech signal into sequence of feature vectors, which can 
be used for speech decoding. The defined window size was 
25 ms with 10 ms time shift. Mel-scale frequency cepstrum 
coefficients were used as feature extraction method, as 
they prove good performance in case of noisy environment. 
Energy was added to the basic set of 12 mel-cepstral 
coefficients, resulting in 13 features. Speech signal contains 
short-term variations [15], which are modelled by delta and 
delta-delta features, calculated over several adjacent 
frames. The final size of feature vector was 39. The 
robustness of feature extraction procedure to different 
channel conditions was improved with cepstral mean 
normalization. 
 The speech recognition usage scenario usually also 
determines the type of acoustic models. The speaker 
independent, context-dependent grapheme based acoustic 
models were best suitable for our task. Three state left-right 
hidden Markov models topology with weighted sum of 
continuous Gaussian probability density functions (PDF) 
was selected for acoustic models. The speech database 
transcriptions, which are needed for acoustic modeling [16], 
are created in a manual way. Therefore we applied acoustic 
modeling training procedure in three steps, consecutively 
improving the quality of transcriptions with forced-
realignment method.  
 The initial parameters of monophone acoustic models 
were estimated as global values, calculated on randomized 
subset of training data. The initialized acoustic models were 
trained on baseline speech transcriptions using the Baum-
Welch re-estimation in a stepwise manner [17]. The 
monophone acoustic models with 1 mixture of Gaussian 
PDF were then used for forced-realigning the speech 
databases transcriptions.  
 The transcriptions resulting from forced-realigning were 
then used for training the acoustic models, with stepwise 
increasing the number of Gaussian mixtures to 32. The 
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second set of acoustic models was again used for forced-
realigning procedure, which resulted in improved speech 
transcriptions. 

A new set of monophone acoustic models was initialized 
in the third step, using the improved transcriptions from the 
second step. The initialization was performed with locale 
values for each monophone acoustic model [18]. The 
acoustic models were then trained with Baum-Welch re-
estimation. The cross word context-dependent acoustic 
models (triphones) were introduced to the set, to 
successfully model the effect of coarticulation in continuous 
speech. The main weakness of triphone acoustic models is 
the large number of free models’ parameters, which must 
be estimated during the acoustic training procedure. 
Phonetic decision tree based clustering was applied to 
triphone acoustic models to control the number of free 
parameters in the proportion with the amount of available 
spoken training material. The decision trees were induced 
on phonetic broad classes, generated in a data-driven way. 
The number of Gaussian PDFs’ per state was then again 
increased in a stepwise manner. The final triphone acoustic 
models used for evaluation had 16 Gaussian PDF per state 
and were speaker and gender independent. 

Vocabulary contained the 64,000 words. All words from 
BNSI training set were included. Most frequent words from 
corpus FidaPLUS [19] were added.  
 Baseline language model was back-off model based on 
trigrams. Singletons bigrams and trigrams were excluded. 
N-grams with frequency, greater than 7, got maximum 
likelihood estimates. N-grams with lower counts were 
discounted under Good-Turing. Final baseline model 
contained 17M bigrams and 33M trigrams. Its perplexity on 
test set was 177. 
 Baseline language model was adapted to the target 
domain using the linear interpolation given in equation (5). 
Interpolation weight was set to 95%. The perplexity of 
adapted language model was 143.  
Decoder is the essential module of an automatic speech 
recognition system. It needs three different data sources for 
its operation: acoustic models, language model and lexicon. 
The decoder included in the experiments was a dynamic 
one-pass Viterbi decoder with enabled beam pruning and 
limited number of active models to control the speech 
recognition speed. 
 The lexicon included in the decoder had 64,000 different 
words. The base unit in the lexicon was grapheme, which 
makes additional grapheme-to-phoneme conversion 
obsolete. The out-of-vocabulary rate for the test set was 
3.12%, which is comparable with other highly inflectional 
languages. 
 
Text and speech databases 

The experiments presented in this paper were carried 
out for Slovenian language, but all proposed methods are 
language independent, and can be used for any other 
language with available language resources. Text database 
was used to train language models. It contained four 
components. The first component was BNSI speech training 
corpus. Its size was 573k words. The second component 
was BNSI-text. It is the collection of TV scenarios. The size 
of this component was 11M words. Both corpora contained 
samples of spoken language. Third and fourth component 
contained samples of written language. The third 
component was corpus Večer, which contained newspaper 
articles. Its size was 95M words. The fourth component was 
Slovenian national corpus FidaPLUS [19]. It is the largest 
database, containing 621M words. 
 Speech database, with large amount of annotated and 
transcribed spoken material, presents an important aspect 

of an automatic speech recognition system. The Slovenian 
BNSI Broadcast News speech database [20] was used in 
the experiments. The BNSI speech database comprises 
speech in several different acoustic conditions, which are 
presented in Table 1. 
 
Table 1. Ratio of various acoustic conditions in the BNSI speech 
database. 

Acoustic condition in database Ratio(%) 

F0 studio/read 36.56 

F1 studio/spontaneous 16.23 

F2 telephone 1.65 

F3 music 6.02 

F4 background 37.63 

F5 nonnative 0.05 

FX other 1.86 
 

 Such variety of acoustic conditions in the BNSI 
database is appropriate for the acoustic modeling training 
task as it guarantees the channel robustness of acoustic 
models. The complete BNSI database consists of 36 hours 
of spoken material; 30 hours are used for acoustic training, 
3 hours are devoted to as development set, and 3 hours are 
standard evaluation set. There are 1565 different speaker, 
1069 of them male and 477 female. The gender of 
remaining 19 speakers was unknown. 
 One of the key factors influencing the robustness of 
speech recognition is noise. Four dedicated test sets with 
633 sentences each, were created (see Table 2), to be able 
to completely control the influence of noise on speech 
recognition accuracy. 
 
Table 2. Signal-to-noise ratio for different test sets. 

Test set SNR(dB) 
Baseline 47.52 
Low noise 39.45 
Medium noise 34.22 
High noise 28.80 

 
The first test set (Baseline) contains the original 

continuous speech in clean acoustic environment. The 
signal-to-noise ratio (SNR) for this test case was 47.52 dB. 
White noise with different level of energy was added to the 
baseline test set recorded in clean acoustic environment. 
As a result, three additional test sets with various noise 
levels (low, medium, high) were created. In such a way the 
SNR of test sets was reduced, simulating usage scenarios 
in adverse acoustic conditions. 
 
Experimental results 
 The analysis of the speech recognition system for noisy 
environment was carried out in several steps. The speech 
recognition results are presented as word accuracy, which 
is: 

(6)    100
N

IH
%Accuracy 


  

where H denotes the number of correct words in the 
recognized set, I is the number of insertions and N denotes 
the number of all words in the test set. 
 First, the optimal language model weight for the 
baseline scenario has to be evaluated. As test set, 
continuous speech in clean acoustic condition with baseline 
interpolated trigram language model was used in this 
scope. The results of this analysis are shown in Figure 1. 
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Fig.1. Speech recognition accuracy for baseline test set. 
 

The best speech recognition accuracy of 84.12% was 
achieved with the language model weight 15. The speech 
recognition accuracy is near optimal between language 
model weights 10 and 20. When the weight is increased 
beyond 20, the accuracy drastically reduces. The achieved 
results for clean audio condition are comparable with other 
Slovenian continuous speech recognition systems of similar 
complexity. The overall accuracy for Slovenian continuous 
speech recognition systems is lower than for some other 
major languages (i.e. English, Spanish), as Slovenian 
belongs to the group of highly inflectional languages. 

The next step of analysis added to the experiments the 
test set with low and medium noise acoustic conditions. The 
preliminary tests with high noise acoustic conditions 
showed drastic reduction of speech recognition accuracy 
(approx. 25%), consequently we decided to exclude this 
test set from the following experiments. The speech 
recognition results are presented in Figure 2. 
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Fig.2. Speech recognition accuracy for test set in various acoustic 
conditions.  
 

The analysis first shows the general influence of noise 
on speech recognition accuracy. The overall accuracy was 
reduced by approximately 10% when low noise was added 
to the test set, and by approximately 25% when medium 
noise was added. The analysis of best speech recognition 
accuracies shows the change of language model weight, 
which was needed to obtain optimal accuracy in adverse 
acoustic conditions. The best accuracy of 76.58% was 
achieved on low noise test set, when the language model 
weight was set to 13. The best accuracy of 58.45% on the 
medium noise test set was also obtained at the language 
model weight 13. This shift of language model weight 

clearly shows that also language model influences the 
robustness of speech recognition in noisy environment. The 
detailed analysis of type of speech recognition errors 
showed that the results achieved in low noise conditions 
could still be used in robotic environment, despite the lower 
overall accuracy. On the other site are the results for 
medium (and high) noise condition to worse to be usable in 
real-life environment. 
 Adverse acoustic conditions also influence the speed of 
speech recognition and with it the time-to-command delay. 
This is mainly caused by the increased search space in the 
speech recognition decoder, which results in the reduced 
accuracy. The continuous speech recognition speed is 
usually measured with real-time factor xRT. The analysis of 
speech recognition speed was carried out on a high 
performance computer server, such as are used in 
distributed speech recognition environments found in state-
of-the-art client/server robot platforms [21, 22]. The results 
of increase of real-time factor are given in Table 3. 
 
Table 3. Increase of real-time factor in various acoustic conditions. 

Acoustic conditions Increase of xRT 
Baseline 1.00 
Low noise 2.97 
Medium noise 5.15 
High noise 7.05 

 
The speed of speech recognition with the low noise 

added to the test set already dramatically decreased. The 
real-time factory was increased by the factor of 2.97. Even 
worse results were observed for the medium (5.15 
increase) and high (7.05 increase) noise conditions. 
 The last step of analysis evaluated the performance of 
adapted language models. The speech recognition results 
are given in Table 4. 
 
Table 4. Speech recognition accuracy with adapted language 
model in various acoustic conditions 

Acoustic conditions Accuracy(%) 
Low noise 78.48 
Medium noise 60.33 
High noise 25.86 

 
The adapted language model improved the speech 

recognition accuracy for low noise acoustic conditions from 
76.58% to 78.48%. The statistically significant improvement 
of speech recognition accuracy confirms the importance of 
adaptation procedures used during the development 
process. 
 
Conclusion 
 The paper presented the research on speech 
recognition in noisy environment. Improvements are 
proposed that are based on two key ideas - optimizing 
language model weight and adapting the language model. 
We showed the effectiveness of the system through several 
experiments of speech recognition in noisy environments. 
 
The work was partially funded by Slovenian Research 
Agency, under contract number P2-0069, Research 
Programme “Advanced methods of interaction in 
telecommunication”. 
 

REFERENCES 
[1] ROJC, Matej. Web-based architecture RES based on finite-

state machines for distributed evaluation and development of 
speech synthesis systems. Int j. comput. linguist. res. (Print)/, 
Mar. 2011, vol. 2, no.1, pp. 1-12. 

[2] Drungilas D, Grisius G, Recognition of Human Emotions in 
Reasoning Algorithms of Wheelchair Type Robots. Informatica, 
2010,Vol. 21, No. 4, pp. 521-532. 



236                                                                              PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 5/2013 

[3] Sato M, Iwasawa T, Sugiyama A, Nishizawa T,  Takano Y, A 
Single-Chip Speech Dialogue Module and Its Evaluation on a 
Personal Robot, PaPeRo-Mini. IEICE TRANSACTIONS on 
Fundamentals of Electronics, Communications and Computer 
Sciences  2010, Vol.E93-A  No.1  pp.261-271. 

[4] Janusz Dulas: Automatic digits recognition for Polish – noisy 
phonemes identification, Electrical Review, 01/2011, pp. 280-
283. 

[5] R. P. Lippmann et al., Multi-style training for robust isolated 
word speech recognition, Proc. of ICASSP, 1987, 705–708. 

[6] Liao, Y. F., Fang, H. H., Hsu, C. H.,  Eigen-MLLR 
Environment/Speaker Compensation for Robust Speech 
Recognition. Proceeding Interspeech, 2008, Brisbane, 
Australia,  pp. 1249–1252.  

[7] Donglin Wang, Leung, H., Keun-Chang Kwak, Hosub Yoon, 
Enhanced Speech Recognition with Blind Equalization For 
Robot "WEVER-R2".The 16th IEEE International Symposium 
on  Robot and Human interactive Communication, 2007, pp. 
684-688.  

 [8] Yoshitaka Nishimura, Mikio Nakano, Kazuhiro Nakadai, Hiroshi 
Tsujino and Mitsuru Ishizuka, Speech Recognition for a Robot 
under its Motor Noises by Selective Application of Missing 
Feature Theory and MLLR, Proc. of ISCA Tutorial and 
Research Workshop on Statistical and Perceptual Audition 
(SAPA, 2006), Pittsburgh, pp.53-58. 

[9] Yamamoto, S., Nakadai, K., Nakano, M., Tsujino, H., Valin, J.-
M., Komatani, K., Ogata, T., Okuno, H.G.,  Design And 
Implementation Of A Robot Audition System For Automatic 
Speech Recognition Of Simultaneous Speech, IEEE Workshop 
on Automatic Speech Recognition & Understanding, ASRU, 
2007, pp. 11-116.  

[10] Yamamoto, S., Valin, J.-M., Nakadai, K., Rouat, J., Michaud, 
F., Ogata, T., Okuno, H.G.,  Enhanced Robot Speech 
Recognition Based on Microphone Array Source Separation 
and Missing Feature Theory, Proceedings of the 2005 IEEE 
International Conference on Robotics and Automation, pp. 
1477 -1482. 

[11] Jianjun Huang, Yafei Zhang, Xiongwei Zhang, Tao Zhu: A Data 
Field method for speech enhancement incorporating Binary 
Time-Frequency Masking, Electrical Review, 2011, No 7, 
pp.225 - 229. 

[12] Kelley, J.F., An empirical methodology for writing user-friendly 
natural language computer application. Proceeding of ACM 

SIG-CHI, 1983 Human Factors in Computing Systems. New 
York: ACM, pp. 193 - 196. 

[13] Lee CH,  On Automatic Speech Recognition at the Dawn of the 
21st Century. IEICE Trans. Inf. Syst., vol. E86-D, 2003, No. 3, 
pp. 377-396. 

[14] Maučec, M. S., Žgank, A., Speech recognition system of 
Slovenian broadcast news. Speech technologies. Rijeka: 
InTech.  2011, pp. 221-236. 

[15] Lipeika A,  Optimization of Formant Feature Based Speech 
Recognition. Informatica, 2010, Vol. 21, No. 3, pp. 361-374. 

[16] Maskeliunas R, Rudzionis A, Rudzionis V., Advances on the 
Use of the Foreign Language Recognizer. Development of 
Multimodal Interfaces: Active Listening and Synchrony, Lecture 
Notes in Computer Science, 2010, Springer Verlag, vol. 5967, 
pp. 217-224. 

[17] Cho Y, Yook D.,  Maximum Likelihood Training and Adaptation 
of Embedded Speech Recognizers for Mobile Environments. 
ETRI Journal, 2010, vol.32, no.1, pp.160-162. 

[18] Pyz G, Simonyte V, Slivinskas V., Modelling of Lithuanian 
Speech Diphthongs. Informatica, 2011,Vol. 22, No. 3, pp. 411-
434. 

[19] Arhar, Š., Gorjanc, V., Korpus FidaPLUS: nova generacija 
slovenskega referenčnega korpusa. Jezik in slovstvo 2007, 
52/2., pp. 95-110. 

[20] Žgank, A., Verdonik, D., Markus, A. Z., Kačič, Z., BNSI 
Slovenian broadcast news database - speech and text corpus, 
In INTERSPEECH, 2005, pp. 1537-1540. 

[21] Jang C, Lee S, Jung S, Song B, Kim R, Kim R, Lee CH, 
OPRoS: A New Component-Based Robot Software Platform. 
ETRI Journal, 2010, vol.32, no.5, pp.646-656. 

[22] Rambow M, Rohrmüller F, Kouraks O,  Brščivcić D, Wollherr 
D,  Hirche S, Buss M (2010) A Framework for Information 
Distribution, Task Execution and Decision Making in Multi-
Robot Systems. IEICE TRANSACTIONS on Information and 
Systems, 2010,  Vol.E93-D  No.6  pp.1352-1360.  

 
 
Authors: prof. dr Mirjam Sepesy Maučec, prof. dr. Zdravko Kačič , 
prof. dr. Andrej Žgank, Faculty of Electrical Engineering and 
Computer Science, University of Maribor, Smetanova 17, 2000 
Maribor, Slovenia, e-mail: {mirjam.sepesy, kacic, andrej.zgank} 
@uni-mb.si. 
 

 


