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Noise identification for ICA ensemble predictors 
 
 
Abstract. In this paper we present a novel method for integration the prediction results by finding common latent components via independent 
component analysis. The latent components can have constructive or destructive influence on particular prediction results. After the elimination of 
the deconstructive signals we rebuilt the improved predictions. We check the method validity on the electricity load prediction task. 
 
Streszczenie. W artykule przedstawiono nową metodę pozwalającą na łączenie wyników predykcji poprzez poszukiwanie ukrytych wspólnych 
składowych przy zastosowaniu procedury analizy składowych niezależnych. Składowe ukryte mogą mieć pozytywny lub negatywny wpływ na wyniki 
predykcji. Po wyeliminowaniu składowych niekorzystnych poprawione zostały wyniki predykcji. Poprawność metody sprawdzono na przykładzie 
predykcji zapotrzebowania na energię elektryczną. (Identyfikacja szumów z wykorzystaniem metody ICA w kontekście agregacji). 
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Introduction 

Forecasting the electricity demand is one of the most 
important areas of the research in energetics. Companies in 
the industry need both, short-term forecasts (minutes, hours 
or days) and long-term (up to several years). The 
importance of the former mentioned, increases with the 
development of competition and free market mechanisms in 
the electricity markets. Forecasting of the demand, it is 
essential for power sector, but in fact is very difficult. Firstly, 
due to the fact that the time series shows seasonal effects 
(daily, weekly and on annual basis). Secondly, due to 
external factors that has significant impact on the demand 
(i.e. meteorological factors) [4]. 

Moreover, there is growing influence of financial markets 
on energy markets. In recent years a significant increase in 
the inflow of financial investments in commodity derivatives 
markets (including electricity) has been observed. For 
example, in the years 2003-2008 in Europe, institutional 
investors increased their investments in the commodity 
market from 13 billion in 2003 to the amount of oscillating 
between 170 and 205 billion in 2008 [8]. As the financial 
crisis interrupted this trend, the financial situation of many 
markets in 2010, came close to a peak in 2008, and was 
even better. Although still under discussion on the relative 
influence of various factors on the prices of goods, it is clear 
that changes in prices of various commodities markets are 
closely linked, and that commodity markets are in close 
relation with the financial markets. 

It is not difficult to create a short-term forecast 
with an error of a few percent. However, the financial costs 
of such an error are so high that the number of researches 
were undertaken in order to reduce even a fractional part of 
it. Therefore, in this article we develop an ICA approach for 
ensemble predictions. Its main idea is based on 
decomposition of the prediction results into underlying 
independent components. Some of these components may 
be associated with the prediction (the real value) and some 
of them can be treated as noise or interference. Elimination 
of noises, termed as destructive components, should result 
in prediction improvement. The ICA approach, represents 
chosen data decomposition from wide set of blind signal 
separation methods, but other techniques like SOS BSS, 
smooth component analysis, sparse component analysis 
can be applied either.  

The term ensemble or aggregation is a consequence of 
the fact that the final result is a combination of individual 
results from different models. In opposite, to other popular 
ensemble methods like bagging or boosting, there will be no 
assumptions to the form of aggregated models nor to 
criteria for model assessment. In other words, we can 

aggregate models (more specifically, the results of their 
prediction) regardless to specific criterion [3, 5, 12]. 

From an operational point of view, we can say, that the 
goal of this method, is to remove from the prediction the 
noise or any disruption that has physical nature. This can 
be described as a filtration of prediction results, but taking 
into account the multiplicity of models, this approach is 
rather designed to provide information about the way in 
which we can effectively extract the noise. 

 
Prediction results improvement 

We assume, that after the learning process, each 
prediction result includes two types of latent components: 
constructive, associated with the target, and destructive, 
associated with the inaccurate learning data, individual 
properties of models, missing data, not precise parameter 
estimation, distribution assumptions etc. Let us assume 
there is m  models. We collect the results of particular 

model in column vector mixi ,...,1,   and treat such vectors 

as multivariate variable T
mxxxX ],...,,[ 21 , NmRX  , 

where N  means the number of observations. We describe 

the set of latent components as T
nkk ],,ˆ,...,ˆ,ˆ[ 121 sssssS  , 

NmRS  , where jŝ  denotes constructive component and 

is is destructive one [9]. For simplicity of further 

considerations we assume nm  . Next, we assume the 
relation between observed prediction results and latent 
components as linear transformation 
(1)    ASX   
where matrix nnR A represents the mixing system. The 
(1) means matrix X  decomposition by latent components 

matrix S  and mixing matrix A .   
 Our aim is to find the latent components and reject the 
destructive ones (replace them with zero). Next we mix the 
constructive components back to obtain improved prediction 
results as 

(2)   T
nkk ],...,,ˆ,...,ˆ,ˆ[ˆˆ

121 00sssASAX   

The replacement of destructive signal by zero is equivalent 
to putting zero in the corresponding column of A. If we 
express the mixing matrix as ],...,,[ 21 naaaA the 

purified results can be described as 

(3)    S00aaaSAX nkk ,...,,,...,,ˆˆ
121   

where  ].0…0 ,0 ,a…a,[aˆ
n2+p1+pp21A The crucial point 

of the above concept is proper A  and S  estimation.  It is 
difficult task because we have not information which 
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decomposition is most adequate. Therefore, we must test 
various transformations resulting in components with 
different properties. The most adequate methods to solve 
the first problem seem to be the blind signal separation 
(BSS) techniques. 

Independent component analysis (ICA) is a statistical 
tool, which allows decomposition of observed variable X  

into independent components T
n ],...,,[ 21 yyyY   [3]. 

Typical algorithms for ICA explore higher order statistical 
dependencies in a dataset, so after ICA decomposition we 
have signals (variables) without any linear and non-linear 
statistical dependencies. To obtain independent 
components we explore the fact that the joint probability of 
independent variables can be factorized by the product of 
the marginal probabilities 
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One of the most popular method to obtain (4) is to find 

such W  that minimizes the Kullback-Leibler divergence 

between )(Yyp  and )(Yyq  [3]:  
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There are many numerical algorithms estimating 
independent components like Natural Gradient, FOBI, 
JADE or FASTICA [1, 3].   
 
 
Statistical analysis of noise 

It seems intuitive and natural that for data with temporal 
structure the random noises are not regular or smooth. The 
standard characteristic investigated in this case is the 
autocorrelation function or its Fourier transformation called 
power spectrum [10, 11]. Unfortunately, it has some 
disadvantages like functional form what is difficult for 
comparison, it appears to be insensitive in some cases and 
it causes problems with detection of the long memory 
dependencies due to its exponential decrease. The 
alternative to autocorrelation function is the Hurst exponent 
H and R/S analysis [2, 6, 7]. It is important to calculate H 
only on linear part of the regression identified by individual 
inspection during analysis [3, 12].  

Therefore, for signals with temporal structure we 
propose a following measure. Let us consider the signal y  

with temporal structure and observations indexed by 
k=1,2,…,N.  The variability (and thus unpredictability of the 
signal) might be measured with the following formula: 
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means Kronecker delta and it is introduced to avoid dividing 
by zero.  The possible values of measure (6) are from 1 to 
0. The measure has simple interpretation: it is maximal 
when the changes in each step are equal to range (maximal 
change), and is minimal when data are constant. In both 
cases the signal is totally predictable, but between those 
marginal states the signal is random.  
 
 To present some reference values let us calculate the 
value of Q for random signals from uniform and normal 

distribution. It can be easily demonstrated, by simulations, 
that for uniform distribution the noise factor is 1/3. 
 In case of a normal distribution of the expected value 
depends on the number of observations and is expressed 
by the following table (Table 1). See also Fig. 1. 
 
Table 1. Expected range and variability of Q-measure for sample of 
random variable y~N[0,1] 

No obs. Expected range Q 
10 1.81 0.44 

100 3.29 0.24 
1000 4.37 0.18 

10000 5.26 0.15 
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Fig. 1. Q-factor dependence on number of observations for 
Gaussian noise 
 

The examples show that for limited random variables 
the Q-measure gives stable results, while for unlimited – it 
asymptotically equals 0. 

To combine information about the distance between the 
reference noise and the Gaussian noise we propose the 
following noise factor P: 

(7)   



Kp

vppp yQyQkP 2)()(   

where 
pk  is the weight for each square difference to the 

reference noise; the default value is equal to one. 
 
Numerical Experiment  
 The validation test of the proposed concept with noise 
detection was performed on the problem of load prediction 
in the Polish power system. Our task was to forecast the 
hourly energy consumption in next 24 hours based on the 
energy demand from last 24 hours and calendar variables: 
month, day of the month, day of the week, and holiday 
indicator. The data covered observations from 1988 until 
1998. 
 We trained six MLP neural networks with one hidden 
layer (with 12, 18, 24, 27, 30, 33 neurons respectively). The 
quality of the results is measured with MAPE criterion for 
following neural networks M1:MLP12, M2:MLP18, 
M3:MLP24, M4:MLP27, M5:MLP31, M6:MLP33. For such 
primary models we perform their ensemble with BSS 
methods. Table 2 presents the results of primary models. 
 
Table 2.  Prediction results for primary models 

Models M1 M2 M3 M4 M5 M6 
MAPE error 2.39   2.36    2.37    2.40    2.40    2.36 

 
Prediction results of the primary models were then 
decomposed using ICA, please see Fig. 2. 
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Fig. 2.Latent components after ICA 
 
 After decomposition we obtained six components for which 
we calculated the noise factor given in (7), see Table 3. 
 
Table 3.  The noise factor for each component after ICA 

Component y1 y2 y3 y4 y5 y6 
Noise factor P 0.0959  0.0975  0.0799  0.0946  0.0871  0.0911
 
It is assumed that lower values of noise factor indicate 
similarity to the reference noise. Therefore, the rejection of 
them should improve the final results. And the other way 
round, we can easily identify the constructive components 
which are responsible for the core of prediction.  
 In our case we observed that the best prediction 
improvement is obtained after elimination of three 
components (y4, y5, y6), not necessarily those with the 
lowest value. To benefit improvement rate, these 
components may be rejected individually or in 
combinations. The following table (Table 4) presents the 
smallest MAPE error after rejection of particular 
components or combination of them. 
 
Table 4. The best models after rejection of particular components 

Rejected  
component  

MAPE error of 
the best model 

y4 2.32 
y5 2.28 
y6 2.24 

y4, y5 2.33 
y4, y6 2.29 
y5, y6 2.25 

 
Conclusions 
 In this article we mainly focused on the model’s results 
decomposition based on independent component analysis 
in electric load prediction. We extended this concept with a 
priori approach for components identification based on 
novel formula for noise factor. 
 Our experiment on electricity data confirmed the validity 
of the proposed solutions. We could benefit of about 5-6% 
of MAPE reduction (best primary model vs. best model after 
decomposition). However, a number of research and 
methodological issues is still open. The most important 

include the way of proper identification and estimation of the 
reference noise.  
 The above presented identification method can be also 
addressed to wide area of data exploration models like 
simulations, trading systems, forecasting models or 
machine learning systems. Therefore, for the future 
research we see the need for the models that can identify 
the fundamental factors influencing, for instance, the stock 
market environment. Unfortunately, these factors are often 
hidden or mixed with noises. Consequently, a fundamental 
problem in financial market modeling is to estimate the main 
trends and to separate the general market dependencies 
from the individual behaviour of a given financial instrument.  
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