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Numerical method of computing impedances of  
a three-phase busbar system of rectangular cross section 

 
 

Abstract. In this paper, a new numerical method of calculating rectangular busbar system impedances is proposed. This method is based 
on the partial inductance theory. In particular, the  impedances of a three-phase system of rectangular busbars with the neutral busbar, and 
the use of the method are described. Results for resistance and reactance for this systems of multiple rectangular conductor have been 
obtained, and the skin and proximity effects have also been taken into consideration. Finally, two applications of a three-phase system are 
described. 
 
Streszczenie. W artykule przedstawiono nową numeryczna metodę obliczania impedancji układów szyn prostokątnych. Metoda ta oparta 
jest na teorii indukcyjności cząstkowych. W szczególności opisano impedancje szynoprzewodów prostokątnych w układzie trójfazowym z 
przewodem neutralnym. Wyznaczono rezystancje i reaktancje takiego wieloprzewodowego układu szynoprzewodów prostokątnych z 
uwzględnieniem zjawiska naskórkowości i zbliżenia. Wyznaczono impedancje dla dwóch przykładów układów trójfazowych z 
szynoprzewodami prostokątnymi. (Numeryczna metoda obliczania impedancji trójfazowego układu szynoprzewodów 
prostokątnych.)  
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Introduction 

High-current air-insulated bus duct systems with 
rectangular busbars are often used in power generation and 
substation, due to their easy installation and utilisation. The 
increasing power level of these plants requires an increase 
in the current-carrying capacity of the distribution lines 
(usually 1-10 kA). The medium voltage level of the 
generator terminals is 10-30 kV. The construction of busbar 
is usually carried out by putting together several flat 
rectangular bars in parallel for each phase in order to 
reduce thermal stresses.  The spacing between the bars is 
made equal to their thickness for practical reasons, and this 
leads to skin and proximity effects [1-6]. 
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Fig. 1. Three phase high-current bus duct of rectangular cross-
section with two busbars per phase and one neutral busbar  

 
The busbar resistance and reactance are not normally 

sufficiently large to affect the total impedance of a power 
system and hence is not included in the calculations when 
establishing the short-circuit currents and reactive volt 
drops within a power system. The exception to this is when 
considering certain heavy current industrial applications 
such as furnaces, welding sets, or roll heating equipment 
for steel mills. In these cases the reactance may be 
required to be known for control purposes, or to obtain 
busbar arrangements to give minimum or balanced 
reactance. This may be important because of its effect on 
both volt drop and power factor, and hence on the gene-
rating plant kVA requirement per kW of load, or on the ta-
riffs payable where the power is purchased from outside [4]. 

The inductances and the effective resistances, in other 
words the impedances, of a system of busbars at a certain 
frequency are closely related to the current distribution over 
the cross-section of each busbar generally known as “skin 
effect” and “proximity effect” of nearby busbars. Both the 
skin effect and proximity effect will generally cause the 
resistance of the busbars to increase and the inductance to 

decrease. If the current distribution is not uniform over the 
cross section of busbar, the determination of skin and 
proximity effects becomes complex. Hence the computation 
of the resistance and inductance of busbars is also complex 
[7,8]. The analytical formulae are possible for round wires 
and tubes [9-12], very long and thin (tapes or strips) 
rectangular busbars [7, 13-20] or for d.c. cases (current 
densities are assumed to be uniform) [13-15, 21-27]. In the 
other cases of rectangular busbars analytically-numerical 
and numerical methods must be applied [5, 11, 14, 15, 28-
36]. These impedances can also be determined by 
experimental way [37-39]. 
 
Integral equation 

The integral formulation is well known [9, 10, 21-25, 40] 
and is derived by assuming sinusoidal steady-state, and 
then applying the magnetoquasistatic assumption that the 
displacement current   E , is negligible. Given this, the 

complex vector potential A  can be related to the complex 

current density J , by 
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where ),,( 111 zyxXX   is the point of observation,  

),,( 222 zyxYY   is the source point,  v is the volume of all 

conductors, 2
12

2 )( zzrXYXY   is the distance 

between the point of observation X and the source point Y 

(Fig.2), where 2
12

2
12 )()( yyxxrXY  . 

Also, directly from Faraday’s law and the definition of 
 XA , it follows that 

 

(2) )()( j)( XVXX grad AE    
 

where )(XV is referred to as the complex scalar electric 

potential and    is the angular frequency.  
Assuming the ideal conductor constitutive relation, 

)()( XX EJ  , and combining this relation with (1) and 

(2) results in 
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In the case of N straight parallel conductors with length 
l, conductivity i  (i=1, 2,…, N), cross section iS  with 

sinusoidal current input function with angular frequency ω 
and complex value iI  respectively flowing in direction of 

Oz, the complex current density has one component along 
the Oz axis, that is    XJX izi  aJ . The component 

 XJ i  is independent of variable z and in a general case, 

depends on the self current and on the currents in the 
neighboring conductors – there are skin and proximity 
effects. Then also the vector magnetic potential 
   XAX z  aA  and the electric field    XEX z  aE . 

The potential  )(XV  is a function of variable z only and 

must satisfy Laplace’s equation 
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the solution of which is 
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By introducing a unit voltage drop (in  -1mV  )  in a 
conductor  
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we obtain from the formula (5) that 
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and finally 
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Fid. 2. The ith and pth conductors of a system of N parallel busbars 
of rectangular cross section 
 

Thus, in the case of N parallel conductors (Fig.1), the 
integral equation for ith conductor is given as following one 
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where i,j =1, 2,…, N. 

Then, by simultaneously solving (9) or (10) with the 
current conservation, 0)(  XJ , the conductor current 

densities and the unit voltage drops can be computed. 
In the case shown in Fig. 1 for each busbar the integral 

equation can be written as 
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where:  
 Nc is the number of phases plus the neutral and   i, j =1, 

2,…, Nc (Nc=4), 
 Nj is the number of busbars belonging to one phase or 

the neutral and k,l =1, 2,…, Nj . 
 
Multiconductor model of the busbars  

In this model, each phase and neutral busbars is divided 
in several thin subbars or filaments [5, 20, 32, 35], as 
shown in Fig. 3.  
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Fig. 3. The kth bar of the ith phase divided into 
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,
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subbars 
 
This division of the kth bar of the ith phase or the neutral 

into subbars is carried out separately for the horizontal (Ox 
axis) and vertical (Oy axis) direction of its cross-sectional 
area. Hence, subbars are generally rectangular in the 
cross-section, with the length and width, respectively, 
defined by the following relations: 
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where a and b are the width and the thickness of the busbar 

respectively, ),( ki
xN and ),( ki

yN  are the number of divisions 

along the busbar width and thickness respectively. So the 
total number of subbars of the kth bar of the ith phase is 

),(),(
,

ki
y

ki
xki NNN  , and they are numbered by 

kiNm ,,...,2 ,1 . For the lth bar of the jth phase or the neutral 

we have the total number of subbars ),(),(
,

lj
y

lj
xlj NNN   

numbered by ljNn ,,...,2 ,1 . All subbars have the length l. 

If the area baS m
ki )(

,  of the mth subbar is very small 

and the diagonal 22 )()( ba  of it is not greater than 

skin depth, we can neglect the skin effect and assume that 
the complex current density can be considered uniform, i.e. 
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where 
)(

,
m
kiI  is the complex current flowing through the  mth 

subbar. 
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 Busbar impedances 
For the mth subbar the integral equation (10) can be 

written as 
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where )(
,
n
ljv  is the volume of the nth subbar of the lth bar of 

the jth phase or the neutral. 

Now, we can divide Eq. (14) by the area )(
,
m
kiS and 

integrate over the volume )(
,
m
kiv  of the mth subbar. Then we 

obtain the following equation 
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where iU  is the voltage drop across of all subbars of the ith 

phase or the neutral (they are connected in parallel), and 
the resistance of the mth subbar is defined by 
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and the self or the mutual inductance is expressed as 
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The exact closed formulae for the self and the mutual 

inductance of rectangular conductor of any dimensions, 
including any length, are given in [21] and [22] respectively. 
We do not use here the geometric mean distance and the 
formula for mutual inductance between two filament wires 
as well. 

The set of equations like as (15), written for all subbars, 
form the following general system of complex linear 
algebraic equations    
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where U  and  I  are column vectors of the voltages and 

currents respectively of all subbars, and Z  is the 

symmetric matrix of self and mutual impedances (the 
impedance matrix) of all subbars and it can be expressed 
as   
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The matrix Z  can be rearranged and rewritten as 
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where the number of  the uth row is 
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and the number of  the vth column is 
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where prN ,  is the total number of subbars of the pth bar of 

the rth phase and ),(,...,2 ,1 , ki
xNts   as well 

),(,...,2 ,1 , ki
yN . 

Then, we can find the admittance matrix Y  which is the 

inverse matrix of the impedance matrix Z  and it is 

expressed as   
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After calculating the admittance matrix it is possible to 
determine the current of  the mth subbar of the kth bar of the 
ith phase or the neutral as 
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The total current of the ith phase or the neutral is 
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By substituting Eq. (25) into Eq. (26), we obtain 
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From the admittance matrix with elements given by Eq. 
(28), we can determine the impedance matrix of a three-
phase system busbars with the neutral busbar as follows 
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Since each jiZ ,  is obtained from a matrix whose 

elements are comprised of information related only to 
construction and material, its value is not affected by the 
busbar current. In spite of that the skin and proximity effects 
are taken into consideration. 

 
Numerical examples 

The first numerical example selected for this paper 
features a three-phase system of rectangular busbars with 
one neutral busbar, whose cross-section is depicted in 
Fig.1. According to the notations applied in this figure, the 
following geometry of the busbars has been selected: the 
dimensions of the phase rectangular busbars and the 
neutral busbars are  mm 60a ,  mm 51  bb  

mm 901  dd . The phase busbars and the neutral are 

made of copper, which has the electric conductivity of 
-1mMS 56  . The frequency is 50 Hz. All phases have 

two busbars per phase - 2321  NNN  and the neutral 

has one busbar - 14 N . The length of the busbar system 

is assumed to be m 1l and m 10l .  
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In the numerical procedure, each phase busbar is 

divided into 30),( ki
xN  and 5),( ki

yN  subbars, which gives 

150 for each busbar. Hence, all three phase and the neutral 
busbars have 1050 total subbars. With the chosen division, 

each rectangular subbar has dimensions of mm12 .This 
allows for the fact that the current density is uniform on the 
cross-section of the subbars. The results of computations 
are shown in Table 1. 

 
Table 2. Self  and mutual impedances in m  of a three phase high-current bus duct 

of rectangular cross-section with a neutral busbar depicted in Fig.1. 

l 
[m]  

Nj 

Ni 
1 2 3 4 

 
 

1 

1 0.038+j 0.233 0.002+j 0.126 -0.002+j 0.079 0.001+j 0.126 

2 0.002+j 0.126 0.038+j 0.232 0.001+j 0.127 -0.001+j 0.079 

3 -0.002+j 0.079 0.001+j 0.127 0.036+j 0.234 -0.003+j 0.048 

4 0.001+j 0.126 -0.001+j 0.079 -0.003+j 0.048 0.065+j 0.240 
 
 

10 

1 0.377+j 3.801 0.014+j 2.771 -0.019+j 2.348 0.010+j 2.771 

2 0.014+j 2.771 0.378+j 3.791 0.007+j 2.775 -0.016+j 2.343 

3 -0.019+j 2.348 0.007+j 2.775 0.361+j 3.813 -0.025+j 2.087 

4 0.010+j 2.771 -0.016+j 2.343 -0.025+j 2.087 0.647+j 3.868 
 

The second configuration of a three phase busbar 
system, the impedances of which are investigated, is shown 
in Fig. 4. It has only one busbar per phase and neutral - 

1321  NNN  and also 14 N . The length of the 

busbar system is assumed to be m 1l and m 10l . In 
the numerical procedure, each phase busbar is divided into 

30),( ki
xN  and 5),( ki

yN  subbars, which gives 150 for 

each busbar. Hence, all three phase and the neutral 
busbars have 600 total subbars. With the chosen division, 
each rectangular subbar has still dimensions of mm12 .  
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Fig. 4. Three phase high-current bus duct of rectangular 
cross-section with one busbar per phase and one neutral busbar 

 

The results of computations are shown in Table 2. 
 

Table 2. Self  and mutual impedances in m  of a three phase high-current bus duct 
of rectangular cross-section with a neutral busbar depicted in Fig.4. 

l 
[m]  

Nj 

Ni 
1 2 3 4 

 
 

1 

1 0.066+j 0.241 0.002+j 0.127 -0.001+j 0.078 0.001+j 0.127 

2 0.002+j 0.127 0.066+j 0.241 0.001+j 0.127 -0.001+j 0.078 

3 -0.001+j 0.078 0.001+j 0.127 0.064+j 0.242 -0.002+j 0.046 

4 0.001+j 0.127 -0.001+j 0.078 -0.002+j 0.046 0.064+j 0.242 
 
 

10 

1 0.658+j 3.875 0.014+j 2.775 -0.014+j 2.334 0.008+j 2.780 

2 0.014+j 2.775 0.658+j 3.875 0.008+j 2.780 -0.014+j 2.334 

3 -0.014+j 2.334 0.008+j 2.780 0.641+j 3.887 -0.020+j2 .074 

4 0.008+j 2.780 -0.014+j 2.334 -0.020+j 2.074 0.641+j 3.887 
 
 
Conclusions 

A novel approach to the solution of impedances of the 
high-current bus ducts of rectangular cross-section has 
been presented in this paper. The proposed approached 
combines filament methods with the exact closed formulae 
for a.c. self and mutual inductances of rectangular 
conductors of any dimensions, which allows the precise 
accounting for the skin and proximity effects. Complete 
electromagnetic coupling between the phase busbars and 
the neutral busbar is taken into account as well.    

As tables 1 and 2 show, both the skin effect and 
proximity effect will generally cause the resistance of the 
busbars to increase and the inductance to decrease. In 
addition, impedances of a three-phase busbar system are 
not proportional to its length, but the proposed method 
allows us to calculate the phase impedances of a set of 
parallel rectangular busbars of any dimensions including 
any length. For the industrial frequency, 100% increase of 
the number of total subbars changes impedances less than 
0.02 % .  

 The validity of our numerical method has been 
successfully compared with a classical finite element 
method (FEM) such a FLUX2D software in the case of 2D 
busbar systems, particularly for the long busbars. 

The model is strikingly simple, from a logical stand-point 
and can be applied in general to conductors of any section 
while conventional methods, being much more complicated, 
always require a greater or lesser degree of symmetry. 
From the practical stand-point of the calculations involved, 
the model requires the solution of a rather large set of linear 
simultaneous equations. However, this solution is well 
within the range of the possibility of existing computers, 
even those of overage capacity. 
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