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Numerical method of computing impedances of
a three-phase busbar system of rectangular cross section

Abstract. In this paper, a new numerical method of calculating rectangular busbar system impedances is proposed. This method is based
on the partial inductance theory. In particular, the impedances of a three-phase system of rectangular busbars with the neutral busbar, and
the use of the method are described. Results for resistance and reactance for this systems of multiple rectangular conductor have been
obtained, and the skin and proximity effects have also been taken into consideration. Finally, two applications of a three-phase system are
described.

Streszczenie. W artykule przedstawiono nowg numeryczna metode obliczania impedancji uktadow szyn prostokatnych. Metoda ta oparta
jest na teorii indukcyjnosci czgstkowych. W szczegdlnosci opisano impedancje szynoprzewodow prostokgtnych w uktadzie tréjfazowym z
przewodem neutralnym. Wyznaczono rezystancje i reaktancje takiego wieloprzewodowego ukfadu szynoprzewoddw prostokgtnych z
uwzglednieniem zjawiska naskoérkowo$ci i zblizenia. Wyznaczono impedancje dla dwoéch przyktadéw ukfaddéw tréjfazowych z

szynoprzewodami  prostokgtnymi.
prostokatnych.)

(Numeryczna metoda obliczania

impedancji tréjfazowego ukfadu szynoprzewodéw
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Introduction

High-current air-insulated bus duct systems with
rectangular busbars are often used in power generation and
substation, due to their easy installation and utilisation. The
increasing power level of these plants requires an increase
in the current-carrying capacity of the distribution lines
(usually 1-10 kA). The medium voltage level of the
generator terminals is 10-30 kV. The construction of busbar
is usually carried out by putting together several flat
rectangular bars in parallel for each phase in order to
reduce thermal stresses. The spacing between the bars is
made equal to their thickness for practical reasons, and this
leads to skin and proximity effects [1-6].
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Fig. 1. Three phase high-current bus duct of rectangular cross-
section with two busbars per phase and one neutral busbar

The busbar resistance and reactance are not normally
sufficiently large to affect the total impedance of a power
system and hence is not included in the calculations when
establishing the short-circuit currents and reactive volt
drops within a power system. The exception to this is when
considering certain heavy current industrial applications
such as furnaces, welding sets, or roll heating equipment
for steel mills. In these cases the reactance may be
required to be known for control purposes, or to obtain
busbar arrangements to give minimum or balanced
reactance. This may be important because of its effect on
both volt drop and power factor, and hence on the gene-
rating plant kVA requirement per kW of load, or on the ta-
riffs payable where the power is purchased from outside [4].

The inductances and the effective resistances, in other
words the impedances, of a system of busbars at a certain
frequency are closely related to the current distribution over
the cross-section of each busbar generally known as “skin
effect” and “proximity effect” of nearby busbars. Both the
skin effect and proximity effect will generally cause the
resistance of the busbars to increase and the inductance to

decrease. If the current distribution is not uniform over the
cross section of busbar, the determination of skin and
proximity effects becomes complex. Hence the computation
of the resistance and inductance of busbars is also complex
[7,8]. The analytical formulae are possible for round wires
and tubes [9-12], very long and thin (tapes or strips)
rectangular busbars [7, 13-20] or for d.c. cases (current
densities are assumed to be uniform) [13-15, 21-27]. In the
other cases of rectangular busbars analytically-numerical
and numerical methods must be applied [5, 11, 14, 15, 28-
36]. These impedances can also be determined by
experimental way [37-39].

Integral equation

The integral formulation is well known [9, 10, 21-25, 40]
and is derived by assuming sinusoidal steady-state, and
then applying the magnetoquasistatic assumption that the

displacement current  ewE , is negligible. Given this, the
complex vector potential A can be related to the complex
current density J , by

1) A= [ 2D

where X =X(x,,y,,z,) is the point of observation,

Y =Y(x,,y,,2,) is the source point, v is the volume of all

conductors, p,, =475, +(z,—z,)° is the distance

between the point of observation X and the source point Y

(Fig.2), where r,, = \/(x2 -x) +(v, -y .
Also, directly from Faraday’s law and the definition of
A(X), it follows that

) E(X)=-joAX)-grad/(X)

where V(X)is referred to as the complex scalar electric

potential and ® is the angular frequency.

Assuming the ideal conductor constitutive relation,
J(X)=0E(X), and combining this relation with (1) and
(2) results in
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In the case of N straight parallel conductors with length
I, conductivity o, (=1, 2,..., N), cross section S, with
sinusoidal current input function with angular frequency w
and complex value I, respectively flowing in direction of
Oz, the complex current density has one component along
the Oz axis, that is Qi(X):az l,-(X)- The component
l[(X) is independent of variable z and in a general case,

depends on the self current and on the currents in the
neighboring conductors — there are skin and proximity
effects. Then also the vector magnetic potential

A(X)=a_ A(X) and the electric field E(X)=a_ E(X).
The potential V(X) is a function of variable z only and
must satisfy Laplace’s equation

the solution of which is

® r(o)= L0 )

By introducing a unit voltage drop (in V-m™) in a
conductor

©) , = Y0)-1(0)

- /

we obtain from the formula (5) that

7) V(z)=-uz+¥(0)
and finally
(8) —gradV(X) =u
L A
(155, 59) ! il

-
"
-
z el
-

Fid. 2. The /" and p™ conductors of a system of N parallel busbars
of rectangular cross section

Thus, in the case of N parallel conductors (Fig.1), the
integral equation for /" conductor is given as following one

J.(X) JC‘)HOZJ‘J (Y)

9) v =u,
o, =1y, Pxy
or
J,(X) jo J,m 1) J(n
(o) L0, Jomy 1 L P-OZJ' =1,
o; 4t T Py A Py

J#i

where i,j =1, 2,..., N.

Then, by simultaneously solving (9) or (10) with the
current conservation, V-J(X) =0, the conductor current
densities and the unit voltage drops can be computed.

In the case shown in Fig. 1 for each busbar the integral
equation can be written as

(11)

where:

e N;is the number of phases plus the neutral and i, j =1,
2,..., Nc (N=4),

e N;is the number of busbars belonging to one phase or
the neutral and k,/ =1, 2,..., N; .

Multiconductor model of the busbars

In this model, each phase and neutral busbars is divided
in several thin subbars or filaments [5, 20, 32, 35], as
shown in Fig. 3.
N
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Fig. 3. The k" bar of the /'
subbars

" phase divided into N = N;_i’k)Ny’k)

This division of the k™ bar of the /" phase or the neutral
into subbars is carried out separately for the horizontal (Ox
axis) and vertical (Oy axis) direction of its cross-sectional
area. Hence, subbars are generally rectangular in the
cross-section, with the length and width, respectively,
defined by the following relations:

a b

—— and Ab=——
(i,k) (i k)

Ny Ny

(12) Aa =

where a and b are the width and the thickness of the busbar
respectively, N\’and N are the number of divisions

along the busbar width and thickness respectlvely So the
total number of subbars of the k" bar of the /" phase is

_ (i,k) a7(i k)
N, =N"N, and
m=1,2,..

they are numbered by

,N, . For the [" bar of the /" phase or the neutral

we have the total number of subbars N, =NV'NU?

numbered by n =1, 2,...,Nj’,. All subbars have the length /.

If the area S}’ =Aa-Ab of the m" subbar is very small

and the diagonal /(Aa)’ + (Ab)® of it is not greater than

skin depth, we can neglect the skin effect and assume that
the complex current density can be considered uniform, i.e.

(m)
Liy

(13) JU) ==
Si(,k)

where I\ is the complex current flowing through the m"
subbar.
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Busbar |mpedances
For the m™ subbar the integral equation (10) can be
written as

(m)
PGS

O; j=1 I=1 n=l ,

") is the volume of the n" subbar of the /" bar of

where v;
thej phase or the neutral.
Now, we can divide Eq. (14) by the area S}’ and

integrate over the volume v('z) of the m" subbar. Then we

obtain the following equation

N/ N//

M(m ) (n) — U

@)D= /l =i
I=1 n=1

Mz

(15)  RPIN +je

J

where U, is the voltage drop across of all subbars of the i
phase or the neutral (they are connected in parallel), and
the resistance of the m" subbar is defined by

/
O-iSi(,Zl)

(16) R =

and the self or the mutual inductance is expressed as

M(m,n) _ HO

17) o =
R XK N %

(m) (n)
J‘ J‘ dvi,k de’l
Pxr

The exact closed formulae for the self and the mutual
inductance of rectangular conductor of any dimensions,
including any length, are given in [21] and [22] respectively.
We do not use here the geometric mean distance and the
formula for mutual inductance between two filament wires
as well.

The set of equations like as (15), written for all subbars,
form the following general system of complex linear
algebraic equations

(18) U=2-1

where U and | are column vectors of the voltages and

currents respectively of all subbars, and Z is the
symmetric matrix of self and mutual impedances (the
impedance matrix) of all subbars and it can be expressed
as

(m.n)
(19) Z= lzo',k)(j,/)

where the element of Z is

R,('k") tjoM, (im.1)

abn for m=n,i=j k=1

Z(mn

(20) Li00h T

(m,n)
oMy, for m#n

The matrix Z can be rearranged and rewritten as

—(Ik(le |__qu

(21) Z(m n)

where the number of the u" row is

u =2§NW +(S—1)N;i'k) +a

r=1 p=1

(22)

and the number of the v'" column is

J 1-1 )
(23) v=Y 3N, +[-1IN"+p

r=l p=1
where N, is the total number of subbars of the p" bar of
the M phase and s5,¢=1,2,..N"P as well
a,f=1,2,.,N".

Then, we can find the admittance matrix Y which is the

inverse matrix of the impedance matrix Z and it is

expressed as
@ v=lri, -z =l -]

After calculating the admlttance matrix it is Eossible to
determlne the current of the m™ subbar of the k™ bar of the
phase or the neutral as

Nji

N, N,
(m) (m n)
Ly = ZZ YioonY,

J=1 I=1 n=1

(25)
The total current of the /" phase or the neutral is

(26)

N,
(27) L;=2Y,,U;
=1
where
N, Nig N, Ny
(m,n)
(28) Yy =222 2 Vi

From the admittance matrix with elements given by Eq.
(28), we can determine the impedance matrix of a three-
phase system busbars with the neutral busbar as follows

Z= [Z,-’j]Ziil = [Zi.j}]

Since each Z,;

(29)

is obtained from a matrix whose

elements are comprised of information related only to
construction and material, its value is not affected by the
busbar current. In spite of that the skin and proximity effects
are taken into consideration.

Numerical examples

The first numerical example selected for this paper
features a three-phase system of rectangular busbars with
one neutral busbar, whose cross-section is depicted in
Fig.1. According to the notations applied in this figure, the
following geometry of the busbars has been selected: the
dimensions of the phase rectangular busbars and the

neutral busbars are a=60mm, b=b,=5mm
d=d,=90mm. The phase busbars and the neutral are
made of copper, which has the electric conductivity of
o =56MS-m™”. The frequency is 50 Hz. All phases have
two busbars per phase - N, = N, = N, =2 and the neutral
has one busbar - N, =1. The length of the busbar system

isassumedtobe /=1mand /=10m.
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In the numerical procedure, each phase busbar is
divided into N'"*’ =30 and N}(f’k) =5 subbars, which gives

150 for each busbar. Hence, all three phase and the neutral
busbars have 1050 total subbars. With the chosen division,

each rectangular subbar has dimensions of 2x1mm .This
allows for the fact that the current density is uniform on the
cross-section of the subbars. The results of computations
are shown in Table 1.

Table 2. Self and mutual impedances in mQ of a three phase high-current bus duct
of rectangular cross-section with a neutral busbar depicted in Fig.1.

I N

m | N 1 2 3 4
1 0.038+] 0.233 0.002+] 0.126 -0.002+j 0.079 | 0.0014j0.126

] 2 0.002+j 0.126 0.038+] 0.232 0.0014j 0.127 -0.001+j 0.079
3 -0.002+j0.079 | 0.001+j0.127 0.036+] 0.234 -0.003+j 0.048
4 0.0014j 0.126 -0.001+j 0.079 | -0.003+j 0.048 | 0.065+] 0.240
1 0.377+j 3.801 0.014+4] 2.771 -0.019+j2.348 | 0.0104j2.771

10 2 0.014+j 2.771 0.378+] 3.791 0.0074j 2.775 -0.016+j 2.343
3 -0.019+2.348 | 0.007+j 2.775 0.361+] 3.813 -0.025+j 2.087
4 0.0104j 2.771 -0.016+]2.343 | -0.025+]2.087 | 0.647+] 3.868

The second configuration of a three phase busbar
system, the impedances of which are investigated, is shown
in Fig. 4. It has only one busbar per phase and neutral -

N, =N,=N,=1 and also N,=1. The length of the
busbar system is assumed to be /=1mand /=10m. In
the numerical procedure, each phase busbar is divided into
N =30 and N;”k) =5 subbars, which gives 150 for
each busbar. Hence, all three phase and the neutral

busbars have 600 total subbars. With the chosen division,
each rectangular subbar has still dimensions of 2x1mm.

A
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A
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Fig. 4. Three phase high-current bus duct of rectangular
cross-section with one busbar per phase and one neutral busbar

The results of computations are shown in Table 2.

Table 2. Self and mutual impedances in mQ of a three phase high-current bus duct
of rectangular cross-section with a neutral busbar depicted in Fig.4.

I N,
m | N 1 2 3 4
1 0.066+] 0.241 0.002+4] 0.127 -0.001+0.078 | 0.001+j0.127
] 2 0.002+j 0.127 0.066+j 0.241 0.001+j 0.127 -0.001+4j 0.078
3 -0.001+0.078 | 0.001+j 0.127 0.064+j 0.242 -0.002+j 0.046
4 0.0014j 0.127 -0.001+10.078 | -0.002+j 0.046 | 0.064+j 0.242
1 0.658+j 3.875 0.0144] 2.775 -0.014+]2.334 | 0.008+j 2.780
10 2 0.014+j 2.775 0.658+j 3.875 0.008+j 2.780 -0.014+4j 2.334
3 -0.014+]2.334 | 0.008+j 2.780 0.641+j 3.887 -0.020+j2 .074
4 0.008+j 2.780 -0.014+]2.334 | -0.020+j2.074 | 0.641+j 3.887

Conclusions

A novel approach to the solution of impedances of the
high-current bus ducts of rectangular cross-section has
been presented in this paper. The proposed approached
combines filament methods with the exact closed formulae
for a.c. self and mutual inductances of rectangular
conductors of any dimensions, which allows the precise
accounting for the skin and proximity effects. Complete
electromagnetic coupling between the phase busbars and
the neutral busbar is taken into account as well.

As tables 1 and 2 show, both the skin effect and
proximity effect will generally cause the resistance of the
busbars to increase and the inductance to decrease. In
addition, impedances of a three-phase busbar system are
not proportional to its length, but the proposed method
allows us to calculate the phase impedances of a set of
parallel rectangular busbars of any dimensions including
any length. For the industrial frequency, 100% increase of
the number of total subbars changes impedances less than
0.02 % .
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The validity of our numerical method has been
successfully compared with a classical finite element
method (FEM) such a FLUX2D software in the case of 2D
busbar systems, particularly for the long busbars.

The model is strikingly simple, from a logical stand-point
and can be applied in general to conductors of any section
while conventional methods, being much more complicated,
always require a greater or lesser degree of symmetry.
From the practical stand-point of the calculations involved,
the model requires the solution of a rather large set of linear
simultaneous equations. However, this solution is well
within the range of the possibility of existing computers,
even those of overage capacity.
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