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Streszczenie. W artykule przedstawiono zastosowanie sztucznej sieci neuronowej (SSN) do diagnostyki zwarcia uzwojenia stojana z obudową 
silnika. Zgromadzono zbiór pomiarów przyspieszeń drgań maszyny dla różnych wartości rezystancji, przez którą zwierano uzwojenie z obudową. 
Rozpatrzono cztery wartości rezystancji oraz cztery wartości momentu obciążenia silnika. Z widma częstotliwościowego przyspieszeń drgań 
maszyny stworzono zbiór zwierający wartości amplitud o częstotliwościach: 100, 200, 300, 400, 500, 600 Hz. Tak przygotowany zbiór wartości 
amplitud przyspieszeń drgań uzupełniony o wartości skuteczne prądów fazowych oraz wartość momentu obciążenia posłużył do wytrenowania 
sztucznej sieci neuronowej. Natomiast odpowiedzią sieci była wartość rezystancji zwarcia uzwojenia stojana z obudową. (Badania i zastosowanie 
sztucznej sieci neuronowej do diagnostyki zwarcia uzwojenia stojana w silniku indukcyjnym pierścieniowym).  
  
Abstract. The paper presents an application of an artificial neural network (ANN) to diagnostics of short-circuit between one phase of the stator 
winding and the motor housing. A set of machine vibration acceleration measurements for different values of resistance, through which winding and 
the housing was short-circuited, was gathered. Four resistance values and four load torque values were examined. From the frequency spectrum of 
machine vibration accelerations a set containing the amplitudes values of the frequencies: 100, 200, 300, 400, 500, 600 Hz was chosen. Thus 
prepared set of  the vibration accelerations amplitudes supplemented with RMS phase currents and the load torque values was used to train the 
artificial neural network. The network response was the value of the short-circuit resistance between the stator winding and the motor housing.  
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Introduction 

Because of the many practical applications of three-
phase induction motors the technical diagnostics plays a 
very important role. In particular, it is important to detect 
early the damage and switch off the machine before major 
failure occurs. In such cases the methods of on-line 
diagnostics are very popular. They are based on continuous 
monitoring of the machine operation, which allows detecting 
the gradually developing damages. One of on-line 
diagnostics methods is the study of the induction motor 
vibration spectrum [5, 8, 9]. 

Formulation of appropriate relationship between the type 
and degree of damage and the diagnostic signal is a very 
complex issue [2, 6]. The main task is to collect a set of 
measurement results or the results of computer simulations 
for many types of different damages and then separation 
and analysis of diagnostic signals. Recognition of types of 
damages from the results of diagnostic signal analysis is a 
very difficult task. One of the methods which helps in the 
identification of the type and degree of damage is the use of 
artificial neural networks [4, 3, 1]. 

This paper presents an application of an artificial neural 
network (ANN) to diagnostics of short-circuit between one 
phase of the stator winding and the motor housing. A set of 
machine vibration acceleration measurements for different 
values of resistance, through which winding and the 
housing was short-circuited, was gathered. Four resistance 
values and four load torque values were examined. From 
the frequency spectrum of machine vibration accelerations 
a set containing the amplitudes values of the frequencies: 
100, 200, 300, 400, 500, 600 Hz was chosen. Thus 
prepared set of  the vibration accelerations amplitudes 
supplemented with RMS phase currents and the load 
torque values was used to train the artificial neural network. 
The network response was the value of the short-circuit 
resistance between the stator winding and the motor 
housing. 

 
Selected measurement results 

Measurements of vibration accelerations were 
performed at three-phase induction motor with the following 

rated parameters: voltage 380 V, star connected, 50 Hz, 2.2 
kW power, the stator phase current 4.6 A, cosφ 0.88, 82% 
efficiency, speed 1400 rev / min, rotor voltage 72 V, rotor 
current 19 A. To obtain the possibility of modelling different 
internal damages of the induction motor, the special new 
stator winding was prepared.  
 

 
 

Fig. 1. Terminal board wiring diagram for simulation of a short-
circuit between one phase and the motor casing 
 

Many internal points of this winding were connected with 
the terminals of the external board. Terminal board wiring 
diagram for simulation of a short-circuit between one phase 
and the motor casing is shown in Figure 1. In order to 
obtain various degrees of damage severity the variable 
resistor is used. 

 

 
 

Fig. 2. Placement of the vibration sensor 
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Measurements were made with the motor mounted on a 
rigid foundation at commutator test bench in order to allow 
the adjustment of the load torque. Vibration was measured 
with a multimeter Svan 914A. The sensor was placed in the 
vertical axis of the motor (Fig 2). 

Measured amplitudes of vibration accelerations (APD) 
were analyzed. This allowed better visualization of the high-
frequency vibration components. In addition, also the 
currents in the different phases of the motor (IA, IB, IC), the 
short-circuit current (IA0) and load torque (T) were 
measured. Figure 3 presents the frequency spectrum of the 
motor vibration accelerations at rated load torque in case of 
health motor, i.e. the value of resistance RSC is infinitive. 
Figures 4-7 show the frequency spectrum of the motor 
vibration accelerations in case of faulty motor. In order to 
eliminate the speed and the rotor flux harmonics the fault-
tolerant controller based on the indirect rotor field oriented 
control can be applied [7]. 
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Fig. 3. Vibration spectrum of the health motor, T=13Nm 
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Fig. 4. Vibration spectrum of the motor T=0Nm 
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Fig. 5. Vibration spectrum of the motor T=4Nm 
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Fig. 6. Vibration spectrum of the motor T=6.5Nm 
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Fig. 7. Vibration spectrum of the motor T=13Nm 
 
Artificial neuron network multiple-layer perceptron 
(ANN MLP) 

In order to determine the degree of the winding damage 
the one-way artificial neural network multiple-layer 
perceptron (ANN MLP) with back-propagation was 
developed. The structure of the network includes 10 
neurons in the input layer, and one neuron in the output 
layer. The neurons in the input layer use a non-linear 
activation function of the hyperbolic tangent, and in the 
output layer a linear activation function. ANN MLP structure 
is shown in Figure 8. 
 

 
 

Fig. 8. Structure of the artificial neuron network 
 
The ANN MLP was trained using the data set containing 

the following groups of parameters: (1) the amplitudes of 
vibration accelerations (APD) with frequencies f = (100, 
200, 300, 400, 500, 600) Hz, (2) the value of effective stator 
phase currents, (3) torque values. Based on the measured 
data an input vector was created containing 16 groups of 
data. The expected result was the value of short-circuit 
resistance RSCin ohms. 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 9/2013                                                                               183 

0 1 2 3 4 5 6

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

E
rr
or

Epoch

 

 

Train

Validation
Test

Best

 
 

Fig. 9. ANN MLP Learning process 
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Fig. 10. ANN MLP fit degree 
 

Developed ANN MLP was trained using the Levenberg-
Marquardt algorithm. A measure of the ANN MLP fitness 
was an error calculated as the difference between the 
expected value and the response of the ANN MLP for the 
selected input data. If the error is greater than the setup 
value the network parameters are modified. Then the test is 
repeated and network response error is calculated. The 
learning process is repeated as long as the error is larger 
than assumed. One cycle of the learning process is called 
an epoch. The process of learning in the various epochs are 
shown in Figure 9. The degree of fit can be assessed on the 
basis of ANN MLP response linear regression as a function 
of the expected value, Figure 10. 

 
Radial basis artificial neuron network (ANN RB)  

For the problem under consideration the ANN RB has 
two layers. The neurons in first layer have radial basis 
transfer function and linear transfer function in the second 
layer. This type of the ANN is Radial Basis Artificial Neural 
Network (ANN RB). The structure of ANN RB is presented 

in Fig. 10 . The radial basis transfer function can be 
expressed as follows 
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where ci – center, i – spread. 
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Fig.10. The structure of ANN RB 
 

The classification problem is realized as a sum of radial 
basis functions. This sum can be expressed as follows 
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The training process of ANN RB is a procedure of 
modifying the weights and biases of each neuron in the 
network. The procedure ends when the minimum of the 
objective function of the following form 
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is achieved. 
 
The application of RBNN ANN RB in diagnosing faults in 

rotor of electrical machines can be found in [4]. 
 
Selected results of ANN MLP and ANN RB testing 

Trained ANN MLP and ANN RB were tested with a set 
of samples that have been involved in training of the 
network. The results of testing ANN MLP and ANN RB are 
shown in Table 1 and Table 3, respectively. The difference 
between the expected value and the ANN response was a 
measure of the learning effectiveness of the ANN. Error of 
the damage detection is defined as the difference between 
the real value of resistance and the network response. The 
results of ANN MLP and ANN RB are shown in Table 2 and 
Table 4, respectively. The ANN is trained better when these 
differences are smaller. In the ideal case, a perfectly trained 
network, the difference is equal to zero.  

 

Table 1. ANN MLP response 
 Expected value RSC = 0 Ω RSC = 9 Ω RSC = 22 Ω RSC = 36 Ω 

T=0 Nm 

ANN response 

0.00323 6.487 22.894 35.966 
T=4 Nm 0.00400 9.032 22.448 36.557 
T=6.5 Nm 0.00842 5.641 22.010 35.803 
T=13 Nm 0.03375 9.077 22.899 35.998 

 
Table 2. ANN MLP response error 

 Expected value RSC = 0 Ω RSC = 9 Ω RSC = 22 Ω RSC = 36 Ω 
T=0 Nm 

ANN response error 

0.323 % -27.922 % 4.064 % -0.0944 % 
T=4 Nm 0.400 % 0.356 % 2.036 % 1.547 % 
T=6.5 Nm 0.842 % -30.231% 1.000 % -0.547 % 
T=13 Nm 3.375 % 0.856 % 4.086 % -0.00556 % 
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Table 3. ANN RB  response 
 Expected value RSC = 0 Ω RSC = 9 Ω RSC = 22 Ω RSC = 36 Ω 

T=0 Nm 

ANN response 

1.421e-13 9.000 22.000 36.000 
T=0.4 Nm 8.527e-14 8.999 22.000 36.000 

T=0.65 Nm 8.527e-14 9.000 22.000 36.000 
T=1.3 Nm 8.527e-14 9.000 22.000 36.000 

 

Table 4. ANN RB response error 
 Expected value RSC = 0 Ω RSC = 9 Ω RSC = 22 Ω RSC = 36 Ω 

T=0 Nm 
ANN response 

error 

1.421e-11 % 1.224e-9 % 0 % 2.763e-11 % 
T=4 Nm 8.527e-12% -8.882e-11 % 9.043e-11 % 2.763e-11 % 

T=6.5 Nm 8.527e-12 % 1.007e-10% 0 % 0 % 
T=13 Nm 8.527e-12 % 1.007e-10% 4.522e-11 % 2.763e-11 % 

 

 
Summary 

The paper presents the results of vibration accelerations 
measurements of the machine at short-circuit between one 
phase of the stator winding and the motor housing. An 
artificial neural network was developed to determine the 
damage degree of the windings (controlled short-circuit 
resistance value) based on the frequency of vibration 
amplitudes. 

Based on the obtained results it can be concluded that 
the developed ANN is able to determine the tendency of the 
stator winding damage worsening. Unfortunately, ANN MLP 
is not able to accurately determine the degree of the 
damage. The second type of network (ANN RB) is very 
suitable for the presented issue of machine faults . 
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