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Abstract. We present a new approach to modelling binary random sequences. We introduce a new concept of expected entropy which enables to 
explain us the problem that in practice the sample entropy never achieves its limit values. We show how to use the expected entropy to estimate the 
randomness of physically generated binary random sequences. Our theoretical analysis have been verified experimentally. 
 

Streszczenie. Przedstawiamy nowe podejście do modelowania losowych ciągów binarnych. Wprowadzamy nowe pojęcie entropii oczekiwanej, 
które pozwala wyjaśnić, dlaczego entropia prób ciągów nigdy nie osiąga wartości granicznej. Pokazujemy, jak wykorzystać entropię oczekiwaną do 
oszacowania losowości ciągów losowych generowanych sprzętowo. Nasze analizy teoretyczne zostały potwierdzone doświadczalnie. (Entropia 
oczekiwana jako miara i kryterium losowości ciągów binarnych) 
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Introduction 

In his seminal papers [1, 2] Shannon introduced the 
notion of information entropy which enabled him to 
formulate the fundamental principles of communication 
theory and cryptology. He defined the entropy of an N–
dimensional binary random variable X = (X1, … XN) (each 
variable Xi takes values 0 or 1 and hence X has values from 
{0, 1}N) as a function of their probabilities P(X1, … XN), i.e. 
 

(1)    H(X1, ..., XN) = 

= – 




12

0,...,1

 1
N

NXX
N

P(X1, …, XN)  log2 P(X1, …, XN) , 

which is an information entropy in the sense entropy rate 
(per each random variable Xi in the N–dimensional random 
variable (X1, … XN)). 

The information entropy in the sense of Shannon is a 
function of probabilities of random variables and cannot be 
measured like physical or numerical values. This is a 
consequence of the fact that the probabilities are a priori 
properties of the variables. However, we can measure a 
posteriori relative frequencies of realizations of random 
variables as approximations of the probabilities in the 
classical sense. In the following, realizations of binary 
random variables are named binary random sequences 
(further called a random variables and random sequences).  

Let n(X1, … XN) be the number of N–element 
subsequences observed in a sample of n bits from a 
random sequence, where (X1, … XN) describes a given 
pattern of N bits. We define the relative frequencies n(X1, … 
XN) N / n and the sample entropy as 
 

(2)    HR(X1, …, XN) | n) = 

= – 

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(n(X1, …, XN) N / n) log2 (n(X1, …, XN) N / n), 

We adopt the convention that 0  log2 0 = 0 if in a sample 
n(X1, …, XN) = 0.  

 
The first experiment 
 In communication theory after the process of scrambling 
and in cryptography after encryption we use a model of 
perfectly random sequences as a realization of an N–
dimensional perfectly random variable (X1, …, XN) with 
uniform probabilities P(X1, …, XN) = 1/2N. The entropy of 
such a random variable is equal to H(X1, …, XN) = 1. 
 In our experiments we used a physical random number 
generator and produced 3 series of 10 samples of perfectly 

random sequences each of size n = 10 MB, 100 MB, and 1 
GB, respectively.  
Table 1 presents the measured and averaged values of the 
sample entropy for each series of samples, the averaged 
deviations from the value of entropy H(X1, …, XN) = 1 and 
the scatterings around the averaged deviations. 
 
Table 1. Sample entropy HR(X1, …, XN) | n) in form 
1 – (deviation)  (scattering of deviation) 

N n = 10 MB n = 100 MB n = 1 GB 
1 1 – 8.60·10–9 · 

· (0.52) 
1 – 8.60·10–10 ·  

· (0.52) 
1 – 8.60·10–11 ·

· (0.52) 

2 1 – 2.58·10–8 · 
· (0.251.75) 

1 – 2.58·10–9 · 
· (0.251.75) 

1 – 2.58·10–10 · 
· (0.251.75) 

8 1 – 2.19·10–6 · 
· (0.81.2) 

1 – 2.19·10–7 · 
· (0.81.2) 

1 – 2.19·10–8 · 
· (0.81.2) 

16 1 – 5.64·10–4 · 
· (0.981.02) 

1 – 5.64·10–5 · 
· (0.981.02) 

1 – 5.64·10–6 · 
· (0.981.02) 

In all cases 1 MB = 8  1048576 bit, ..., 1 GB = 1000 MB. 
 
 We can observe the following phenomena. 
– For increasing size n of samples, the differences 1 – 
HR(X1, …, XN) | n) get smaller, but always the sample entropy 
HR(X1, …, XN) | n) < 1. 
– For increasing dimension N of the random variable  
(X1, …, XN) the differences 1 – HR(X1, …, XN) | n) are greater, 
but the scatterings around the averaged values are smaller. 
 
The Bernoulli process, binomial distribution and two 
important measures 
 We attempt to explain theoretically the experimental 
results observed above. We take the Bernoulli process as a 
basic mathematical model, describing random variables 
with binary values. It is characterized by the binomial 
distribution with probabilities 

(3)   P(n, k = k) = 







k

n
P(0)k P(1)n–k , 

where k denotes the random variable of the binary value 0, 
k the number of zeros in the sample, n the size of the 
sample, P(0) the probability of the binary value 0 occurring 
in the sample, P(1) the probability of occurring the binary 
value 1. 
 Two important measures characterize the Bernoulli 
process. 
– The expected value E(k) of the random variable k (it is a 
measure of statistical convergence, or concentration). E(k) = 
nP(0) and for the random variable n = k / n we have E(n) = 
P(0).  
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– The variance V (k) of the random variable k (it is a 
measure of statistical divergence, dispersion). V (k) = 
nP(0)P(1) and for the random variable n = k / n we have V (n) 
= P(0)P(1) / n. 
 However, in the general case it seems practically 
impossible to find an analytical relation of the above 
process with the notion of information entropy. We propose 
to assume a simplified model of information entropy which 
enables one to relate the Bernoulli process and sample 
entropy. 
 
The simplification of the information entropy formula 
 We suppose that the probabilities under consideration 
have the form 
 

(4)   P(X1, ..., XN) = 1/2N + ),...,( 1 NXX , 

Where ),...,( 1 NXX << 1/2N are the biases of a non-uniform 

distribution 
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of an imperfectly random variable with respect to the 
uniform distribution of a perfectly random variable with all 
P(X1, …, XN) = 1/2N. The definition of probability 
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 We use the Maclaurin expansions of the logarithmic 
function for 0 < x < 1 

(6) ln(1 + x) = .)1(...
432 1
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 Thus, we get the following approximation formulae for 
information entropy 
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),...,( 1 NXX = HS(X1, …, XN) .  

  
Now, we see that the information entropy HS((X1, …, XN) in 
the simplified form (7) can be represented as the unit 
entropy minus the sum of the squares of all biases  
(X1, …, XN) of the non-uniform distribution. 

 The errors of order O( 3
),...,( 1 NXX ), which we omitted in 

the final formula (7), lead to an inaccuracy of calculating 
entropy  
 

(8)   H(X1, …, XN) = H(X1, …, XN) – HS(X1, …, XN)  

 – 




12

0,...,

2

1
2ln6

 2
N

NXX

N

N
3

),...,( 1 NXX + 

+ 




12

0,...,

3

1
2ln12

 2
N

NXX

N

N
4

),...,( 1 NXX  O( 3
),...,( 1 NXX ) . 

 We must always calculate the both summands in 
formula (8), because for the distributions with probabilities 

of the form P(X1, …, XN) = 1/2N + ),...,( 1 NXX = 1/2N +  we 
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Expected entropy 
 We introduce a new notion of expected entropy which 
relates the information entropy and Bernoulli process. For a 
perfectly random variable the expected value is E(n) = P(0) 
= 1/2 and for the N–dimensional random variable the 
expected value is E(X1, …, XN) = P(X1, …, XN) = 1/2N, 
respectively. 
 Now, let us suppose that the variance V (X1, …, XN) of 
the random variable (X1, …, XN) corresponds to the 
deviation of the relative frequency of this variable observed 
in a sample sequence from the expected value E(X1, …, XN) 
= 1/2N. Thus, we suppose that in the special case of a one-
dimensional random variable the biases satisfy 

 2
1

2
0

2
)( 1X V (n) = P(0)P(1) / n. In the general case of 

a N–dimensional random variable this implies 

(9)    2
),...,( 1 NXX  

= V(X1, …, XN) = P(X1, …, XN) (1 – P(X1, …, XN)) N / n . 
 

 We insert 2
),...,( 1 NXX  V(X1, …, XN) from (9) to (7) to get 

the value which we denote 

(10) HS(X1, …, XN) = 
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 = 1 – M(N, n) = HE(X1, …, XN) | n) . 

 We name HE(X1, …, XN) | n) the expected entropy and 
the term M(N, n) the masking component. 
 We see that the values of the expected entropy HE(X1, 
…, XN) | n) calculated from (10) are the measured values of 
the sample entropy HR(X1, …, XN) | n) given in Table 1. In 
practice, the sample entropy for any sample from a binary 
sequence is always exactly equal to the expected entropy. 
 We can also explain why the convergence as n tends to 
infinity for greater N is much slower. We find that the limit is 
 

(11)  lim n HS(X1, …, XN) = 
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= lim n { 1 – 
2ln

)1/2 -(1 2 1-

n

NN

 } = 1 , 

which is shown in Figure 1. 
 

 
 
Fig. 1. Convergence of the expected entropy HE(X1, …, XN) | n)  for 
perfectly random sequences to the unit entropy for different N as a 
function of the size n of the sample 
 
 We see that a sample of n bits of a perfectly random 
sequence can achieve the value of unit entropy equal to 
one when the size n tends to infinity. For sequences of finite 
size we always get measured values of the sample entropy 
and expected entropy 
 

(12) HR(X1, …, XN) | n)  = HE(X1, …, XN) | n) = 1 – M(N, n) < 1 . 
 

 This is not a property of non-randomness of binary 
sequences. These are the natural features of sample 
entropy and expected entropy implied by the finiteness of 
samples of binary sequences and the Law of Large 
Numbers. The masking component M(N, n) is an uncertainty 
of each estimator of the entropy H(X1, …, XN). This 
uncertainty constitutes a random error as a non-repeatable 
inaccuracy caused by a known but uncontrollable factor. 
The random error cannot be decreased since it depends 
solely on the variance of the random variable and for a 
given size of the tested sample always has the same value. 
 Let us consider the problem of decreasing the scattering 
of measured values of the sample entropy around the 
average value for increasing N. Analysis of the experimental 
results shows that all values of sample entropy are in the 
interval 
 

(13)  HR(X1, …, XN) | n) = 1 – M(N, n) (1  N) , 
 

where 

(14)   N 
N

N N

2

)1/2-(1
. 

The value N cannot be treated as an equivalent of the 
standard deviation since entropy is not a probability 
distribution. 
 
The expected entropy of imperfectly random variables 
 We have considered perfectly random variables with the 
uniform probabilities P(X1, …, XN) = 1/2N and entropy  
H(X1, …, XN) = 1. Now, we calculate the expected entropy 
for imperfectly random variables.  
 Let us suppose that a sequence of binary random 
variables is modeled as a binary Markov chain of the first 
order (further called a Markov chain) which has bias s and 
correlation K. In this case, the probabilities P(X1) and P(X1 | 
X2) are given by 

P(0) = 1/2 – s , 
P(1) = 1/2 + s , 

P(0|0) = 1/2 – s + 1/2 K , 
P(0|1) = 1/2 – s – 1/2 K , 
P(1|0) = 1/2 + s – 1/2 K , 
P(1|1) = 1/2 + s + 1/2 K 

 

and the probabilities P(X1, X2) are equal to 
P(0,0) = P(0)P(0|0) = 1/4 – s + s2 + 1/4 K – 1/2 sK , 
P(0,1) = P(0)P(1|0) = 1/4       – s2 – 1/4 K + 1/2 sK , 
P(1,0) = P(1)P(0|1) = 1/4       – s2 – 1/4 K – 1/2 sK , 
P(1,1) = P(1)P(1|1) = 1/4 + s + s2 + 1/4 K + 1/2 sK . 

 

For s << 1 and K << 1, we have the simplified formulae 
 

P(0,0)  1/4 – s + 1/4 K , 
P(0,1)  1/4      – 1/4 K , 
P(1,0)  1/4      – 1/4 K , 
P(1,1)  1/4 + s + 1/4 K . 

All the probabilities above have the form P(X1) = 1/2 + )( 1X  

and P(X1, X2) = 1/4 + ),( 21 XX , respectively, where in all 

cases ),...,( 1 NXX  << 1. We insert the above values of P(X1) 

and P(X1, X2) to the formula (7) for entropy to obtain  

(15)   HS(X1)  
2ln2

1
 (4s2) , 

(16)   HS(X1, X2)  
2ln2

1
(4s2 + 1/2 K2) . 

 Information theory [3, 4, 5] tells us that the conditional 
entropy H(X2 | X1) of two neighbouring random variables X1 
and X2 in a Markov chain satisfies 
 

(17)   H(X2 | X1) = 2 H(X2, X1) – H(X1) . 
 

For the Markov chain considered above, the value of the 
conditional entropy of the random variables in (17) is given 
by the relation 

(18)   HS(X2 | X1)  1 – 
2ln2

1
(4s2 + K2) . 

It is known that the entropy of the random variables in an 
N–dimensional random variable (X1, …, XN)  for a Markov 
chain satisfies 

(19)  H(X1, …, XN) = 
N

N

N

XH 1-)( 1   H(X2 | X1) . 

In turn, (15) - (19) imply 

(20)  HS(X1, …, XN)  1 – 
2ln2

1
(4s2 + 

N

N 1-
K2) . 

It is known that for independent random variables (X1, …, 
XN)  the entropy H(X1, …, XN) = const., but for dependent 
random variables the entropies for various dimensions 
usually are different values. The most representative fact is 
 

(21)  lim N H(X1, …, XN) = H(X2 | X1) , 
 

since for N   the formula (21) represents 
interdependence between all random variables and the 
entropy attains a minimal value. In our case we have 

(22) lim N HS(X1, …, XN) = HS(X2 | X1)  1 – 
2ln2

1
(4s2 + K2).  

 To calculate the value of the masking component M(N,n) 
we have to take into account that the random variables in 
the Markov chain are dependent and the cumulative 
variance of the random variable X = (X1, …, XN) has the form 
 

(23)  V (X) = E[(X – E(X ))2] =  

= 


N

i
iXV

1

)( + 2 

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ij
ji

i

XXE
11

),(
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, 
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hence it is the sum of the variances V (Xi) and covariances 
E(Xi, Xj) . 
 For a sequence of imperfectly random variables mode-
led as a Markov chain, after taking into account the masking 
component M(N, n), the expected entropy is equal to 
(24)   HE(X1, …, XN | n) =   

2ln2

1
1 ( )21(

)1/2 -(12
K

n

NN

 + 4s2 + 
N

N 1-
K2) . 

 The term (1 + 2K) is caused by the fact that dependent 
random variables with correlation K > 0 have positive 
covariances, hence the cumulative variance has the 
property of overdispersion. 
 We have the limit 

(25) lim n HE(X1, …, XN | n)  
2ln2

1
1 (4s2 + 

N

N 1-
K2) 

which is depicted in Figure 2. 
 

 
Figure 2. Convergence of expected entropy HE(X1, …, XN | n)  for 
imperfectly random sequences to non-unit entropy for different N as 
a function of the size n of the sample 
 

 We indicate some consequences of this analysis. The 
mutual information for a Markov chain is defined as 
 

(26) I(X2; X1) = H(X2) + H(X1) – 2H(X1, X2) = H(X2) – H(X2 | X1) 
 

and (15) - (16) or (15) and (18) give 

(27)   IS(X2; X1)  
2ln2

2K
 . 

 We see that the mutual information of the Markov chain 
with bias s and correlation K depends only on the 
correlation between neighbouring random variables in the 
chain, but it does not depend on the bias. 
 

The second experiment 
 Let us suppose that we have samples of random 
sequences modeled as a Markov chain with bias s = 1/256 
and correlation K = 1/128 (such samples can be produced 
by inserting in a perfectly random sequence a controlled 
non-deterministic bias and correlation as “errors of non-
randomness”). Let us measure and average the sample 
entropy for 10 samples of such sequences and compare 
them with the theoretical values of expected entropy. 
 
Table 2. Expected and sample entropy for samples of size n = 10 MB 

Components  
of expected entropy 

Calculated 
expected entropy 

Measured 
sample entropy 

 
unit entropy  

masking  
bias  

correlation 

HE(X1) =  
 1 

– 8.73·10–9  
– 4.40·10–5  

– 0 · 4.40·10–5  
1 – 4.40·10–5 

HR(X1) = 
 
 
 
 

1 – 4.54·10–5 
 

unit entropy  
HE(X1, X2) =  

1  
HR(X1, X2) = 

 

masking  
bias  

correlation 

– 2.62·10–8  
– 4.40·10–5  

– 1/2 · 4.40·10–5  
1 – 6.60·10–5 

 
 
 

1 – 6.78·10–5 
 

unit entropy  
masking  

bias  
correlation 

HE(X1, …, X8) = 
= 1 – 

– 2.22·10–6 – 
– 4.40·10–5 – 

– 7/8 · 4.40·10–5  
 1 – 8.47·10–5 

HR(X1, …, X8) = 
 
 
 
 

= 1 – 8.62·10–5 
 

unit entropy  
masking  

bias  
correlation 

HE(X1, …, X16) = 
= 1 – 

– 5.73·10–4 – 
– 4.40·10–5 – 

– 15/16 · 4.40·10–5  
 1 – 65.8·10–5 

HR(X1, …, X16) = 
 
 
 
 

= 1 – 65.9·10–5 
 

Table 3. Expected and sample entropy for samples of size n = 100 MB 
Components  

of expected entropy 
Calculated 

expected entropy 
Measured 

sample entropy 
 

unit entropy  
masking  

bias  
correlation 

HE(X1) =  
1  

– 8.73·10–10  
– 4.40·10–5  

– 0 · 4.40·10–5  
1 – 4.40·10–5 

 HR(X1) = 
 
 
 
 

1 – 4.45·10–5 
 

unit entropy  
masking  

bias  
correlation 

HE(X1, X2) = 
1  

– 2.62·10–9  
– 4.40·10–5  

– 1/2 · 4.40·10–5  
1 – 6.60·10–5 

HR(X1, X2) =   
 
 
 

 
1 – 6.75·10–5 

 
unit entropy  

masking  
bias  

correlation 

HE(X1, …, X8) = 
1 

– 2.22·10–7  
– 4.40·10–5  

– 7/8 · 4.40·10–5  
1 – 8.27·10–5 

 HR(X1, …, X8) = 
 
 
 
 

1 – 8.47·10–5 
 

unit entropy  
masking  

bias  
correlation 

HE(X1, …, X16) = 
1 

– 5.73·10–5  
– 4.40·10–5  

– 15/16 · 4.40·10–5  
 1 – 14.3·10–5 

HR(X1, …, X16) = 
  
 
 
 

1 – 14.5·10–5 
 

Table 4. Expected and sample entropy for samples of size n = 1 GB 
Components  

of expected entropy
Calculated 

expected entropy 
Measured 

sample entropy 
 

unit entropy  
masking  

bias  
correlation 

HR(X1) = 
1 

– 8.73·10–11  
– 4.40·10–5  

– 0 · 4.40·10–5  
1 – 4.40·10–5 

 HR(X1) = 
 
 
 
 

1 – 4.47·10–5 
 

unit entropy  
masking  

bias  
correlation 

HE(X1, X2) =  
1 

– 2.62·10–10  
– 4.40·10–5  

– 1/2 · 4.40·10–5  
1 – 6.60·10–5 

 HR(X1, X2) = 
 
 
 
 

1 – 6.67·10–5 
 

unit entropy  
masking  

bias  
correlation 

HE(X1, …, X8) = 
1 

– 2.22·10–8  
– 4.40·10–5  

– 7/8 · 4.40·10–5  
1 – 8.25·10–5 

 HR(X1, …, X8) = 
 
 
 
 

1 – 8.38·10–5 
 

unit entropy  
masking  

bias  
correlation 

HE(X1, …, X16) = 
1 

– 5.73·10–6  
– 4.40·10–5  

– 15/16 · 4.40·10–5  
1 – 9.10·10–5 

 HR(X1, …, X16) = 
 
 
 
 

1 – 9.24·10–5 
  

 We make the following observations. 
– In all the cases the results of measuring of sample 
entropy confirm exactly the calculations which take into 
account the individual components of expected entropy. 
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– The masking component for imperfectly random 
sequences has the same properties as for perfectly random 
sequences, but for the value of K = 1/128 the influence of 
the factor (1 + 2K) is negligible. 
– The measured and averaged values of sample entropy 
are somewhat greater than those of expected entropy; this 

follows from the fact that terms of order O( 3
),...,( 1 NXX ) were 

disregarded. 
 
Expected entropy as a criterion of randomness of 
samples of binary sequences 
 The question is whether the equality (12) for the 
perfectly random sequences, i.e.: 
 

(28)   HR(X1, …, XN) | n) = HE(X1, …, XN) | n) 
 

implies a practical criterion of randomness of samples of 
binary sequences. 
 Let us suppose that we have a sample from a 
presumably imperfectly random sequence with unknown 
entropy H(X1, …, XN) < 1. In this case, as long as we cannot 
check experimentally that sample entropy is not much 
smaller than the expected entropy 
 

(29)   HR(X1, …, XN) | n) < HE(X1, …, XN) | n) 
 

it is not possible to refute the hypothesis that it is a sample 
of a perfectly random sequence. To prove the inequality 
(29), taking into account the scatterings (1 + N) and (1 – 
N), we write 

(30)  (1 + N) 
n

NN )1/2 -(1 2
 <  

< (1 – N) 
n

NN )1/2 -(1 2
 + 4s2 + 

N

N 1-
K2 . 

Hence we have to investigate a sample whose size satisfies  

(31)   n(N)MIN >

K
N

N
s

N NN

22

31-/2

1
4

)1/2-(12



 

and calculate the sample entropy HR(X1, …, XN) | n) for a 
sample of size n(N)MIN. After taking into account the scatte-
ring, the sample entropy HR(X1, …, XN) | n)  is comparable 
with the expected entropy HE(X1, …, XN) | n) of a perfectly 
random sequence. It is necessary to test at least 3 samples 
with possibly large sizes to confirm their randomness. 
 
A practical examples of the application of the criterion 
of randomness 
 Now, we present our criterion of randomness using 
simple examples. We assume that samples from binary 
sequences to test are generated by a physical random 
number generator which produces a sequence with the bit 
rate BR = 8 Mbit/s. Let us remark that it does not make 
sense to consider the entropy H(X1) for one-dimensional 
random variables since then there is no correlation. 
Investigation of N–dimensional random variables for N  3 
requires generating of samples of great size. Since we 
suppose that the random sequence under study is modeled 
as a first order Markov chain, it is enough to investigate a 
two-dimensional random variable and the corresponding 
entropy H(X1, X2). 
 We propose to use as a measure of randomness of a 
binary sequence, and consequently of the random 
generator, the minimal time of sample generation 
 

(32)    TMIN > n(N)MIN / BR . 
 Let us consider a random sequence modeled as a 
Markov chain with bias s = 5 · 10–3 and correlation K = 5 · 
10–3. These are typical parameters for a physical random 

number generator with avalanche diode as a source of 
randomness [6]. In practice, these values cannot be 
significantly decreased and it is not possible to create a real 
source of randomness with smaller biases and correlations. 
For N = 2, we have n(N)MIN > 2000 bits, hence TMIN > 22 s. 
For greater size n = 10 MB we have HR(X1, X2 | n) = 1 – 8.12 
· 10–5 in the direction of the value HE(X1, X2 | n) = 1 – 2.58 · 
10–8, so the difference is unquestionable. In fact, it is a bad 
result and we can refute the hypothesis of perfect 
randomness of a sample of such a sequence. However, this 
does not mean that this sequence cannot be used to create 
a perfectly random one. 
 We can generate M sequences and XOR them. For the 
resulting sequence the bias and correlation decrease in 
proportion to s(M) = 1/2 (2s)M and K(M) = KM, respectively. 
These values are available only after non-deterministic 
post-processing, which is the mixing of XOR operations on 
independent binary random sequences. The resulting 
sequence inherits all properties from that modeled on a 
Markov chain of first order and the corresponding 
parameters change only to be s(M) << s and K(M) << K. 
The expected entropy for s(M) = 1/2 (2s)M and K(M) = KM 
is equal to 
 

(33)   HE(X1, …, XN | n)    


2ln2

1
1 ( MM

NN

sK
n

2)2()21(
)1/2 -(12

 + MK
N

N 21-
) . 

For a sequence having the above values of parameters we 
must take its size to be equal 

 (34)  n(N,M)MIN > 

K
N

N
s

N

MM

NN

22

31-/2

1
)2(

)1/2-(12



 . 

If we take M = 8 sequences, then for s = 10–2 and K = 10–2 

we have s(N=2, M=8) = 1.28  10–14, K(N=2, M=8) =  
10–16, n(N=2, M=8)MIN > 1.4  1027 and TMIN > 5.55  1012 
years, respectively. We see that the last result does not 
never enables one to refute the hypothesis of non-
randomness of such a sequence. 
 
Summary 
 We introduced the notion of expected entropy and 
presented a criterion of randomness and corresponding 
characteristics of binary sequences produced by a physical 
random number generator. The theoretical analysis was 
confirmed by experimental results. The next problems to 
consider for stationary and ergodic binary random variables 
modeled as binary Markov chains of the first order are 
equivalence of probability distributions and isomorphism in 
the measure-theoretic sense (equivalence of entropies of 
random variables). 
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