
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 1/2014 111

Philemon Daniel1, Rajeevan Chandel2

National Institute of Technology Hamirpur, India (1, 2)

Dynamic Ruleset Based Online Concurrent Testing of Functional
Faults for Embedded Controllers

Abstract. Concurrent fault testing is mandatory in critical embedded systems like automobile applications. Architectures of concurrent testing are
proposed in the present work, where testing is non-intrusive. The concept that embedded program has several tasks is exploited here. The hardware
overhead of the test architecture implemented on the controller of OC8051 is minimal. It is easily scalable. Error detection latency is kept at a few
cycles and cumulative functional error coverage is 100%. The architectures are compared with the best of the existing methods.

Streszczenie. Współbieżne testowanie jest często obowiązkowe w systemach wbudowanych. W artykule zaprezentowano architektury tego typu
systemów gdzie wbudowany program wykonuje wiele zadań. Analizowano opóźnienie w wykrywaniu błędów oraz uwarunkowania sprzętowe.
Online współbieżne testowanie błędów w kontrolerach wbudowanych

Keywords: Design for testability, software based self-test, concurrent error detection, online test, embedded controllers
Słowa kluczowe: testowanie współbieżne, wykrywanie błędów.

doi:10.12915/pe.2014.01.26

Introduction
 As designs are pressed hard towards CMOS
nanotechnologies, on-field testing has become a major area
of research. For safety critical real time systems concurrent
testing is mandatory especially for embedded hardware
controllers. Transient errors are frequently appearing whose
causes cannot be well established. Errors due to alpha
particles which might result in a momentary fault, noise of
various kinds that might creep into the circuit during runtime
also add to the complexity. Process defects, extreme
operating conditions, design compromises play a major role
in contributing to on-field permanent faults. Online
concurrent error detection becomes important to ensure the
safety of the embedded systems. The problem is explored
in depth for decades now and there are several methods
suggested to tackle the problem [2]. The easiest approach
is duplication, wherein two copies of the design under test
(DUT) are put in the design to avoid one of the DUTs
becoming faulty [3] including data repetition methods as in.
The difficulty is the overhead which is more than one
hundred percent. There has been another method
suggested to avoid errors almost completely, where three
copies of the DUT are used and the majority output is taken
as the final. Here the overhead is even greater at 300%.
These both are impractical because of the overhead. A
better duplication method focusing on the critical portions of
a circuit has been presented in reference [4]. Another
common technique has been to use different codes,
particularly within the framework of finite state machine
(FSM) controllers. Structural changes have been exploited
for micro circuits for concurrent self-checking whose
overhead is again huge [5, 6]. When using FSMs different
parity checks are implemented along the circuit which do
detect the faults, but hardware overhead and performance
compromises prohibit these methods from being practical
[7]. Non-intrusive self-checking synthesis methods have
been explored in references [8, 9]. Parity based schemes
are given in [10, 11]. Algorithmic error detection methods
for digital signal processing systems are also examined
[12]. Several external monitoring schemes which could be
implemented on FPGAs are discussed in [13, 14].
Instruction level impact of low level faults of control logic is
also explored [15]. Authors in [16] have explored online test
based on input monitoring schemes where the input set of
test vectors are monitored for fault detection, however
again the overhead is excessive. Functional test methods
are explored in [17]. Reconfigurable architectures [18] and
reprogrammable structures [19] include a lot of flexibility in
online testing. Consequently, an attempt has been made in

the present work to propose new test architectures for
embedded controllers with minimal area overhead.

Online concurrent testing assumptions
 The principle behind the proposed online concurrent
test architecture is presented here. In any embedded
application, there is a main program cycle and several
supplementary tasks that are executed to attend to the
services in the application. The program is not often
changed. The proposed method exhaustively checks for
errors in the controllers for the program that is being
executed. The method does not check for faults in the
controller that are not activated by the program executed.
This reasoning is justified by the fact that it is sufficient if the
current embedded program runs error free for any on-field
device. Subsequently it is essential to provide a non-
intrusive test architecture that does not degrade the
performance, maintains minimum hardware overhead even
while scaling and has minimum error detection latency. The
checking conditions are termed as the rule set. Once the
program is loaded, for each instruction executed the control
signal conditions of the controller can be relied upon to be
true during any future execution of the program.

Online Concurrent Test for Embedded Controllers
(OCT-EC)
 In many of the embedded applications each of the tasks
does a small amount of work. Only some of the output
states of the controller are used. Three schemes of
dynamic ruleset based online concurrent testing of
functional faults for embedded controllers namely OCT-
EC1, OCT-EC2 and OCT-EC3 are presented in this
section.
OCT-EC1: (One ruleset per task)
 An embedded program consists of a main loop and
various service routines (tasks). Since each task is usually
a specific service there are a set of invariants. A ruleset is
extracted for each task based on the invariants at the
output of the controller. This extraction is explained with an
assembly program to find the factorial of a number read
from Port0. In Table 1, the first column lists the instructions
in the routine. The first row lists the outputs of the decoder.
All the remaining rows list the valid output values for the
corresponding instruction. The last row shows the
cumulative valid values at each output. A “-” indicates don’t
care at that bit position. Any violation of the ruleset by the
output states are checked every cycle for the respective
task. If there is a violation, depending on the severity a
repair service routine can be initiated, the processor can be
stalled.

112 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 1/2014

Table 1. Example routine to find factorial to show OCT-EC1

Fig. 2. Rule bit selects the mux input

The test architecture to monitor one bit is shown in Fig

2. D flip-flops store the rule bits that choose one of the three
options through a multiplexer. The complete setup is shown
in Fig. 3. The simplicity of the structure, concurrent fault
detection, low error detection latency and the minimal
hardware overhead are the key highlights of the
architecture. The ruleset for each task is loaded at the
beginning of the task from a dedicated local memory. The
address of the first instruction of the task is used as the task
identifier. The exit from the task is deducted either by RET
or RETI instruction. The ruleset remains active through the
entire task. The error coverage is not high enough for
individual tasks though the cumulative coverage of several
tasks is higher. This is because of the fact that the invariant
for one instruction is not necessarily the same invariant for
the next instruction within the task. For larger controllers
with error coverage of individual tasks should be higher to
guarantee higher overall error coverage.

Fig.3. Architecture for OCT-EC1

OCT-EC2: (One ruleset for mutually inclusive and exclusive
outputs for all tasks)

The output bits of the controller are grouped into
categories according to their purposes. Their purposes
have a direct correlation with the instructions. Only some of
the instructions use each of them. These are 16 sets of
outputs from the controller as shown in Table 2. Many of
them are mutually exclusive and some of them are mutually
inclusive. For example ram_write_source is mutually
exclusive with ram_read_source. If the controller asserts
ram_read_source it is actually selecting a source for read
address. When the ram is being read, it would not be

written to at the same time. Similarly ram_wr and rom_rd
cannot be true at the same time.
 Since 8051 is Harvard architecture, it uses a single bus
to read data and code. An example for mutually inclusivity
is with ram_wr and ram_write_source. When a ram is to be
written to ram_write_source provides the source of the
write_address and ram_wr signal is asserted. A
combinational logic check is built to check any violations of
both mutual exclusivity and mutual inclusivity. This method
when implemented along with OCT-EC1 gives good error
coverage at the controller output. The structure for the
ram_write and ram_read mutual exclusivity is shown in Fig
4.

Fig.4. A sample mutually exclusive rule

Table 2. Decoder’s output grouping
1. ALU source 1 9. Compare source
2. ALU source 2 10. PSW set
3. ALU source 3 11. ROM address source
4. Write to SFR 12. ROM read
5. RAM read 13. Write Accumulator
6. RAM write 14. Read modify write
7. PC read 15. PSW write
8. PC write 16. Carry input select

OCT-EC3: (Group parity fed into CRC for each cycle of a
task)
Each of the output groups shown in Table 2 is grouped and
their group parity is extracted each cycle, passed on to a
Cyclic Redundancy Check (CRC). 16bit Multiple Input
Signature Register (MISR) is used for this purpose. The
CRC signature is cumulatively computed for each
instruction in the task. The signature at the end of the task
is compared with a local look up table. Entry and exit points
for each task are determined as in OCT-EC1.
 The architecture is shown in Fig 5. At the output of the
controller, each group is passed through a xor gate. These
16-bits are then fed to a 16-bit MISR. For complex entry exit
routines, a counter is used to match with the task cycle
count. The error detection latency is just a few cycles in the
first two schemes. In this method it is a maximum of one
task cycle. This structure can detect all single errors.

Instruction
ram_r

(3)
ram_w

(3)
wr

src_se
l1
(3)

src_se
l2
(2)

src_se
l3

alu_op
(4)

Comp_sel
(2)

Bit_ad
dr

Pc_
wr

Pc_sel
(3)

Rmw Istb
wr_sfr

(2)

psw_s
el
(2)

cy_s
el
(2)

R
d

Default 000 000 0 000 00 0 0000 00 0 0 000 0 1 00 00 00 0
MOV R1,80H 000 000 1 000 00 0 0000 00 0 0 000 0 1 00 00 00 0
MOV R0,80H 000 000 0 000 00 0 0000 00 0 0 000 0 1 00 00 00 0
MOV A,R0 000 000 0 000 00 0 0000 00 0 0 000 0 1 01 00 00 0

CALL:DEC R0 000 000 1 000 10 0 1110 00 0 0 000 1 1 00 00 11 0
MOV B,R0 000 000 0 000 00 0 0000 00 0 0 000 0 1 01 00 00 0
MUL AB 100 000 1 011 00 0 0011 00 0 0 000 0 0 10 10 00 0

DJNZ
R1,CALL

000 000 0 000 00 0
0000
/1110

01 0 0/1 010 1 0 00 00
00/1

1
0

RET 011 000 0 000 00 0 0000 00 0 1 001 0 0 00 00 00 0
Ruleset --- 000 - 0-- -0 0 ---- 0- 0 - 0-- - - -- -0 -- 0

Task No Memory
address

Rule set

1 00001 0001

2 00011 0010

3 01000 0000

4 01110 0010

OR gate

DFFs

OC8051 Decoder

Pass/Fail

44

D‐FF

Inp

Inv Inp

Rule bit

Pass / Fail

2

1’b0

Ram_r Ram_w

33

Ram_r

Ram_w3
3

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 1/2014 113

Double line errors can be a result of multiple internal faults
or a single fault propagating through multiple lines. The
probability of detecting double errors occurring in different
groups is still high and it depends on the CRC polynomial
chosen. All stuck at faults can be detected. The error
coverage from this method is very good. The cumulative
error coverage is usually 100%. Aliasing is negligible.

Fig.5. OCT-EC3 architecture with grouped outputs through MISR

Experimental Results and Discussion

For validation of the architectures these are
implemented for the controller of the OC8051
microcontroller. Performance metrics for the three schemes
proposed for online concurrent testing are presented in
Table 3. Eight common tasks are chosen which include bulk
data transfer from external memory and servicing the five
interrupts. It is shown that using these architectures
effective online concurrent testing can be performed.
Methods 1 and 2 are important for safety critical systems
where a single error could result in a catastrophe. The
hardware overhead is well within accepted limits and these
do not scale proportional to the size of the DUT. If a higher
latency is tolerable method 3 is seen to give the best
results. Any error on the output lines are captured within the
execution of the same task. The cumulative error coverage

reaches 100% within 3 tasks. But since there can be other
sources of error, the architecture has to be run for all tasks
and concurrent check is done at the end of each task. The
hardware gate count is computed as shown in the table 3
with the parameters viz. i) Controller outputs to watch (N),
ii) Tasks to test (T), iii) Bits of program counter are watched
(M), iv) Groups of invariant outputs(G) and v) Bit counter to
keep track of the per task execution cycles (C). A D-flip-flop
(qDff) is taken to be equivalent to four gates.

The controller in 8051 which is the DUT has 3754 gates.
For the cases investigated in the present work the hardware
is computed in terms of number of gates as in Table 3. The
overhead is nominal for all the three methods. However,
method OCT-EC3 leads to minimal hardware overhead
which is 19.21%. The hardware overhead in all the three
proposed testing methods scales up only with increase in
the number of tasks (T). Furthermore, if the number of tasks
is very high, tasks with similar coverage can be omitted for
concurrent test.

Table 3. Performance metrics for the schemes proposed

Property
Proposed Methods

OCT-EC1 OCT-EC2 OCT-EC3

Hardware
calculation

N Mux + N*T
Dff + log T
Mux + M Dff

+ 36gates
(comparators)

Method1 +
2G gates

G gates + G Dff +
G*T Dff + C Dff +
M Dff

+ 72 gates
(comparators)

Hardware
overhead

31.74%
(N=32; T=8;
M=8)

32.59%
(N=32;T=8;
M=8;G=16)

19.21%
(N=32; T=8; M=8;
G=16; C=8)

Error coverage 53.42%
(cumulative)

71.31%
(cumulative)

100% (in 3
tasks)

Error detection
latency

Same cycle Same cycle
Task cycles after
activation

Scalability

Scales with T

Scales with
T

Scales with T

Performance
overhead

Nil Nil Nil

Practical
applicability

Yes Yes Yes

Table 4. Comparison of the proposed schemes with those reported in literature

Concurrent
test methods

Hardware
overhead

(%)

Performance
overhead

Error detection
coverage (%)

Error
detection
latency

Design/ Code
modification

required
Scalability

Applicability in
modern CPUs

Main highlights

DWC[20] >200% Yes ~100%
Same
cycle

Yes Prohibitive Nil
Generic but area
overhead is too

expensive

CIC [21] Medium Yes (>200%) ~99% ~80cycles Yes Medium Yes
Excessive execution

time overhead

SRS[22] ~13% Yes (~10%) 100% max 8ms Yes Prohibitive Nil
Hardware/

software coupled
architecture

IBCT[23]
~41%(+cont

rol logic)
Yes >90%

Same
cycle

Yes Prohibitive Nil
Impractical for larger

circuits

WC-CED[24] 57% Yes ~81%
max 4
cycles

Yes Medium Yes

For superscalar
schedulers;

coverage non
deterministic

CASP[25] Medium Yes ~100%
Several
seconds

Yes Prohibitive Yes
Involves hardware/
software/external

storage
CED-

TPOC[26]
~200% Yes ~80%

Same
cycle

Yes Prohibitive Nil Dissimilar duplicity

OCT-EC1
(Proposed)

31.74% Nil 53.42%

Same
cycle

Nil Very good Yes Generic structure

OCT-EC2
(Proposed)

32.59% Nil 71.31%
Same
cycle

Nil Very good Yes Generic structure

OCT-EC3
(Proposed)

19.21%
(low)

Nil
100% (error
coverage)

No. of
cycles in

a task
(max)

Nil Very good Yes Generic structure

Task No Memory
address

Signature Cycles

5 0x0101 1010 32

6 0x01A4 0011 40

7 0x01FE 1001 52

8 0x020C 1100 24

OC8051 Decoder

MISR

=
Yes/Pass

No/Fail

Real Time
Clock

Counter

G1 G2 G3 G4

114 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 1/2014

A comparison of the proposed methods with the best of
the existing methods reported in literature in this category is
presented in Table 4. It is shown that only a few methods
have applicability in present day architectures. There is no
performance overhead or design/code changes required for
the proposed methods. They are also generic in nature i.e.
they can be implemented for any controller. Consequently
these are flexible and scalable without a proportional
scaling of area overhead. OCT-EC3 is the best amongst the
methods considered in the present analysis. This is
because the hardware overhead is low, there is no
performance overhead and it gives 100% line error
coverage. Moreover, design or code modification is not
required, scalability is very good and it is applicable for
modern CPUs. Its fault detection latency is a few cycles.
The advantage is significant because of the division of the
code into smaller tasks at the hardware level and each task
is verified individually for the controller.

Conclusions
 Three test architectures are proposed in this work for
control logic of embedded processors. They apply dynamic
on-field testing and are concurrent in nature where the
normal execution of the processor is not affected. Since the
embedded program is divided into tasks and each task is
verified individually, the error detection latency is kept high
and the hardware overhead is minimal. Two of them exhibit
the best latency possible. One of them gives 100% line
error coverage with a maximum latency of the number
cycles in the current task. The results are encouraging and
the work is further being explored to test other controllers.

REFERENCES
[1] M. Goessel, and S. Graf, Error Detection Circuits, McGraw-Hill,

1993.
[2] S. Mitra, and E. J. McCluskey, “Which Concurrent Error

Detection Scheme to Choose?,” in Proc. of the International
Test Conference, 2000, pp. 985–994.

[3] A. Avizienis, and J. P. J. Kelly, “Fault Tolerance by Design
Diversity: Concepts and Experiments,” IEEE Transactions on
Computers, vol. 17, no. 8, pp. 67-80, 1984.

[4] K. Mohanram, and N. A. Touba, “Cost-Effective Approach for
Reducing Soft Error Rate in Logic Circuits,” in Proc. of the
International Test Conference, 2003, pp. 893–901.

[5] G. Aksenova, and E. Sogomonyan, “Design of Self-Checking
Built-in Check Circuits for Automata with Memory,” Automation
and Remote Control, vol. 36, no. 7, pp. 1169–1177, 1975.

[6] S. Dhawan, and R. C. D. Vries, “Design of Self-Checking
Sequential Machines,” IEEE Transactions on Computers, vol.
37, no. 10, 1988, pp. 1280–1284.

[7] C. Zeng, N. Saxena, and E.J. McCluskey, “Finite State
Machine Synthesis with Concurrent Error Detection,” in Proc. of
the International Test Conference, 1998, pp. 672–679.

[8] D. Das, and N. A. Touba, “Synthesis of Circuits with Low-Cost
Concurrent Error Detection Based on Bose-Lin Codes,” Journal
of Electronic Testing: Theory and Applications, vol. 15, no. 2,
1999, pp. 145–155.

[9] N. K. Jha and S.-J. Wang, “Design and Synthesis of Self-
Checking VLSI Circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 12, no. 6,
1993, pp. 878–887.

[10] R. A. Parekhji, G. Venkatesh, and S. D. Sherlekar, “Concurrent
Error Detection Using Monitoring Machines,” IEEE Design and
Test of Computers, vol. 12, no. 3, 1995, pp. 24–32.

[11] S. Almukhaizim, P. Drineas, and Y. Makris, “Entropy-Driven
Parity-Tree Selection for Low-Overhead Concurrent Error
Detection in Finite State Machines,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 25, no. 8, 2006, pp. 1547-1554.

[12] Costas-Perez, L.; Rodriguez-Andina, J.J., "Algorithmic
Concurrent Error Detection in Complex Digital-Processing
Systems," Design & Test of Computers, IEEE , vol.26, no.1,
pp.60,67, Jan.-Feb. 2009

[13] Mandjavidze, I.; Romanteau, T., "Embedding online test and
monitoring features in real time hardware systems," Real Time
Conference (RT), 2010 17th IEEE-NPSS , vol., no., pp.1,8, 24-
28 May 2010

[14] Abdelfattah, M.S.; Bauer, L.; Braun, C.; Imhof, M.E.; Kochte,
M.A.; Hongyan Zhang; Henkel, J.; Wunderlich, H.,
"Transparent structural online test for reconfigurable systems,"
On-Line Testing Symposium (IOLTS), 2012 IEEE 18th
International , vol., no., pp.37,42, 27-29 June 2012

[15] M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris,
“Instruction-Level Impact Analysis of Low-Level Faults in a
Modern Microprocessor Controller,” IEEE Trans. Computers,
vol. 60, no. 9, pp. 1260-1273, 2011.

[16] I. Voyiatzis, A. Paschalis, D. Gizopoulos, C. Halatsis, F.S.
Makri, and M. Hatzimihail, "An Input Vector Monitoring
Concurrent BIST Architecture Based on a Precomputed Test
Set," IEEE Trans. on Computers, vol. 57, no. 8, pp. 1012-1022,
Aug. 2008

[17] J. Shen and J. Abraham, “Native mode functional test
generation for processors with applications to self test and
design validation,” in Proc. IEEE Int. Test Conf., Oct. 1998, pp.
990–999.

[18] Sandeep Sharma, Ashutosh Gupta, ManojDuhan and
Solomon Raju Kota, "Design of Partially Reconfigurable
Computing System and Implementation on Virtex-4 FPGA,"
The IUP Journal of Science & Technology, Vol. 6, Sept., 2010

[19] P. Philemon Daniel and RajeevanChandel, “A Flexible
Programmable. Memory BIST Architecture,” IETE Journal of
Education, vol. 51, pp. 67-74, Dec 2010.

[20] Johnson, B.W.; Aylor, J.H.; Hana, H.H., "Efficient use of time
and hardware redundancy for concurrent error detection in a
32-bit VLSI adder," Solid-State Circuits, IEEE Journal of ,
vol.23, no.1, pp.208,215, Feb. 1988

[21] Rajabzadeh, A.; Mohandespour, M.; Miremadi, G., "Error
detection enhancement in COTS superscalar processors with
event monitoring features," Dependable Computing, 2004.
Proceedings. 10th IEEE Pacific Rim International Symposium
on , vol., no., pp.49-54, 3-5 March 2004

[22] Khan, O.; Kundu, S., "Hardware/Software Codesign
Architecture for Online Testing in Chip Multiprocessors,"
Dependable and Secure Computing, IEEE Transactions on ,
vol.8, no.5, pp.714-727, Sept.-Oct. 2011

[23] Makris, Y; Bayraktaroglu, I.; Orailoglu, A., "Enhancing reliability
of RTL controller-datapath circuits via Invariant-based
concurrent test," Reliability, IEEE Transactions on , vol.53,
no.2, pp.269- 278, June 2004

[24] Karimi, N.; Maniatakos, M.; Jas, A.; Tirumurti, C.; Makris, Y,
"Workload-Cognizant Concurrent Error Detection in the
Scheduler of a Modern Microprocessor," Computers, IEEE
Transactions on, vol.60, no.9, pp.1274,1287, Sept. 2011

[25] Li, Y; Makar, S.; Mitra, S, "CASP: Concurrent Autonomous
Chip Self-Test Using Stored Test Patterns," Design,
Automation and Test in Europe, 2008. DATE '08 , pp.885,890,
10-14 March 2008

[26] Khedhiri, C.; Karmani, M.; Hamdi, B.; KaLok Man, "Concurrent
Error Detection Adder Based on Two Paths Output
Computation," Parallel and Distributed Processing with
Applications Workshops (ISPAW), 2011 Ninth IEEE
International Symposium on , pp.27,32, May 2011

Authors: Contact author: Mr. Philemon Daniel, NIT Hamirpur,
Hamirpur – 177005, Himachal Pradesh, India. Email:
phildani7@gmail.com
Dr. Rajeevan Chandel, NIT Hamirpur, Hamirpur – 177005,
Himachal Pradesh, India. Email: rchandel@nith.ac.in

