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Abstract. Concurrent fault testing is mandatory in critical embedded systems like automobile applications. Architectures of concurrent testing are 
proposed in the present work, where testing is non-intrusive. The concept that embedded program has several tasks is exploited here. The hardware 
overhead of the test architecture implemented on the controller of OC8051 is minimal. It is easily scalable. Error detection latency is kept at a few 
cycles and cumulative functional error coverage is 100%. The architectures are compared with the best of the existing methods. 
 

Streszczenie. Współbieżne testowanie jest często obowiązkowe w systemach wbudowanych. W artykule zaprezentowano architektury tego typu 
systemów gdzie wbudowany program wykonuje wiele zadań. Analizowano opóźnienie w wykrywaniu błędów oraz uwarunkowania sprzętowe. 
Online współbieżne testowanie błędów w kontrolerach wbudowanych  
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Introduction 
 As designs are pressed hard towards CMOS 
nanotechnologies, on-field testing has become a major area 
of research. For safety critical real time systems concurrent 
testing is mandatory especially for embedded hardware 
controllers. Transient errors are frequently appearing whose 
causes cannot be well established. Errors due to alpha 
particles which might result in a momentary fault, noise of 
various kinds that might creep into the circuit during runtime 
also add to the complexity. Process defects, extreme 
operating conditions, design compromises play a major role 
in contributing to on-field permanent faults. Online 
concurrent error detection becomes important to ensure the 
safety of the embedded systems. The problem is explored 
in depth for decades now and there are several methods 
suggested to tackle the problem [2]. The easiest approach 
is duplication, wherein two copies of the design under test 
(DUT) are put in the design to avoid one of the DUTs 
becoming faulty [3] including data repetition methods as in. 
The difficulty is the overhead which is more than one 
hundred percent. There has been another method 
suggested to avoid errors almost completely, where three 
copies of the DUT are used and the majority output is taken 
as the final. Here the overhead is even greater at 300%. 
These both are impractical because of the overhead. A 
better duplication method focusing on the critical portions of 
a circuit has been presented in reference [4]. Another 
common technique has been to use different codes, 
particularly within the framework of finite state machine 
(FSM) controllers. Structural changes have been exploited 
for micro circuits for concurrent self-checking whose 
overhead is again huge [5, 6]. When using FSMs different 
parity checks are implemented along the circuit which do 
detect the faults, but hardware overhead and performance 
compromises prohibit these methods from being practical 
[7]. Non-intrusive self-checking synthesis methods have 
been explored in references [8, 9]. Parity based schemes 
are given in [10, 11]. Algorithmic error detection methods 
for digital signal processing systems are also examined 
[12]. Several external monitoring schemes which could be 
implemented on FPGAs are discussed in [13, 14]. 
Instruction level impact of low level faults of control logic is 
also explored [15]. Authors in [16] have explored online test 
based on input monitoring schemes where the input set of 
test vectors are monitored for fault detection, however 
again the overhead is excessive. Functional test methods 
are explored in [17]. Reconfigurable architectures [18] and 
reprogrammable structures [19] include a lot of flexibility in 
online testing. Consequently, an attempt has been made in 

the present work to propose new test architectures for 
embedded controllers with minimal area overhead. 
  

Online concurrent testing assumptions 
 The principle behind the proposed online concurrent 
test architecture is presented here. In any embedded 
application, there is a main program cycle and several 
supplementary tasks that are executed to attend to the 
services in the application. The program is not often 
changed. The proposed method exhaustively checks for 
errors in the controllers for the program that is being 
executed. The method does not check for faults in the 
controller that are not activated by the program executed. 
This reasoning is justified by the fact that it is sufficient if the 
current embedded program runs error free for any on-field 
device. Subsequently it is essential to provide a non-
intrusive test architecture that does not degrade the 
performance, maintains minimum hardware overhead even 
while scaling and has minimum error detection latency. The 
checking conditions are termed as the rule set. Once the 
program is loaded, for each instruction executed the control 
signal conditions of the controller can be relied upon to be 
true during any future execution of the program.  
 

Online Concurrent Test for Embedded Controllers 
(OCT-EC) 
 In many of the embedded applications each of the tasks 
does a small amount of work. Only some of the output 
states of the controller are used.  Three schemes of 
dynamic ruleset based online concurrent testing of 
functional faults for embedded controllers namely OCT-
EC1, OCT-EC2 and OCT-EC3 are presented in this 
section.  
OCT-EC1: (One ruleset per task) 
 An embedded program consists of a main loop and 
various service routines (tasks). Since each task is usually 
a specific service there are a set of invariants. A ruleset is 
extracted for each task based on the invariants at the 
output of the controller. This extraction is explained with an 
assembly program to find the factorial of a number read 
from Port0. In Table 1, the first column lists the instructions 
in the routine. The first row lists the outputs of the decoder. 
All the remaining rows list the valid output values for the 
corresponding instruction. The last row shows the 
cumulative valid values at each output. A “-” indicates don’t 
care at that bit position. Any violation of the ruleset by the 
output states are checked every cycle for the respective 
task. If there is a violation, depending on the severity a 
repair service routine can be initiated, the processor can be 
stalled.
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Table 1. Example routine to find factorial to show OCT-EC1 
 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Rule bit selects the mux input 
 
The test architecture to monitor one bit is shown in Fig 

2. D flip-flops store the rule bits that choose one of the three 
options through a multiplexer. The complete setup is shown 
in Fig. 3. The simplicity of the structure, concurrent fault 
detection, low error detection latency and the minimal 
hardware overhead are the key highlights of the 
architecture. The ruleset for each task is loaded at the 
beginning of the task from a dedicated local memory. The 
address of the first instruction of the task is used as the task 
identifier. The exit from the task is deducted either by RET 
or RETI instruction. The ruleset remains active through the 
entire task. The error coverage is not high enough for 
individual tasks though the cumulative coverage of several 
tasks is higher. This is because of the fact that the invariant 
for one instruction is not necessarily the same invariant for 
the next instruction within the task. For larger controllers 
with error coverage of individual tasks should be higher to 
guarantee higher overall error coverage.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. Architecture for OCT-EC1 
 
OCT-EC2: (One ruleset for mutually inclusive and exclusive 
outputs for all tasks) 

The output bits of the controller are grouped into 
categories according to their purposes. Their purposes 
have a direct correlation with the instructions. Only some of 
the instructions use each of them. These are 16 sets of 
outputs from the controller as shown in Table 2. Many of 
them are mutually exclusive and some of them are mutually 
inclusive. For example ram_write_source is mutually 
exclusive with ram_read_source. If the controller asserts 
ram_read_source it is actually selecting a source for read 
address. When the ram is being read, it would not be 

written to at the same time. Similarly ram_wr and rom_rd 
cannot be true at the same time.  
 Since 8051 is Harvard architecture, it uses a single bus 
to read data and code. An example for mutually inclusivity 
is with ram_wr and ram_write_source. When a ram is to be 
written to ram_write_source provides the source of the 
write_address and ram_wr signal is asserted. A 
combinational logic check is built to check any violations of 
both mutual exclusivity and mutual inclusivity. This method 
when implemented along with OCT-EC1 gives good error 
coverage at the controller output. The structure for the 
ram_write and ram_read mutual exclusivity is shown in Fig 
4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. A sample mutually exclusive rule 
 
Table 2. Decoder’s output grouping 
1. ALU source 1 9. Compare source 
2. ALU source 2 10. PSW set 
3. ALU source 3 11. ROM address source 
4. Write to SFR 12. ROM read 
5. RAM read 13. Write Accumulator 
6. RAM write 14. Read modify write 
7. PC read 15. PSW write 
8. PC write 16. Carry input select 
 
OCT-EC3: (Group parity fed into CRC for each cycle of a 
task)  
Each of the output groups shown in Table 2 is grouped and 
their group parity is extracted each cycle, passed on to a 
Cyclic Redundancy Check (CRC). 16bit Multiple Input 
Signature Register (MISR) is used for this purpose. The 
CRC signature is cumulatively computed for each 
instruction in the task. The signature at the end of the task 
is compared with a local look up table. Entry and exit points 
for each task are determined as in OCT-EC1. 
 The architecture is shown in Fig 5. At the output of the 
controller, each group is passed through a xor gate. These 
16-bits are then fed to a 16-bit MISR. For complex entry exit 
routines, a counter is used to match with the task cycle 
count. The error detection latency is just a few cycles in the 
first two schemes. In this method it is a maximum of one 
task cycle. This structure can detect all single errors. 

Instruction 
ram_r 

(3) 
ram_w 

(3) 
wr 

src_se
l1 
(3) 

src_se
l2 
(2) 

src_se
l3 

alu_op 
(4) 

Comp_sel 
(2) 

Bit_ad
dr 

Pc_
wr 

Pc_sel 
(3) 

Rmw Istb 
wr_sfr 

(2) 

psw_s
el 
(2) 

cy_s
el 
(2) 

R
d 

Default 000 000 0 000 00 0 0000 00 0 0 000 0 1 00 00 00 0 
MOV R1,80H 000 000 1 000 00 0 0000 00 0 0 000 0 1 00 00 00 0 
MOV R0,80H 000 000 0 000 00 0 0000 00 0 0 000 0 1 00 00 00 0 
MOV A,R0 000 000 0 000 00 0 0000 00 0 0 000 0 1 01 00 00 0 

CALL:DEC R0 000 000 1 000 10 0 1110 00 0 0 000 1 1 00 00 11 0 
MOV B,R0 000 000 0 000 00 0 0000 00 0 0 000 0 1 01 00 00 0 
MUL AB 100 000 1 011 00 0 0011 00 0 0 000 0 0 10 10 00 0 

DJNZ 
R1,CALL 

000 000 0 000 00 0 
0000 
/1110 

01 0 0/1 010 1 0 00 00 
00/1

1 
0 

RET 011 000 0 000 00 0 0000 00 0 1 001 0 0 00 00 00 0 
Ruleset --- 000 - 0-- -0 0 ---- 0- 0 - 0-- - - -- -0 -- 0 

Task No Memory 
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Rule set

1 00001 0001

2 00011 0010
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4 01110 0010
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Double line errors can be a result of multiple internal faults 
or a single fault propagating through multiple lines. The 
probability of detecting double errors occurring in different 
groups is still high and it depends on the CRC polynomial 
chosen. All stuck at faults can be detected. The error 
coverage from this method is very good. The cumulative 
error coverage is usually 100%. Aliasing is negligible.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. OCT-EC3 architecture with grouped outputs through MISR 
 
Experimental Results and Discussion 

For validation of the architectures these are 
implemented for the controller of the OC8051 
microcontroller. Performance metrics for the three schemes 
proposed for online concurrent testing are presented in 
Table 3. Eight common tasks are chosen which include bulk 
data transfer from external memory and servicing the five 
interrupts. It is shown that using these architectures 
effective online concurrent testing can be performed. 
Methods 1 and 2 are important for safety critical systems 
where a single error could result in a catastrophe. The 
hardware overhead is well within accepted limits and these 
do not scale proportional to the size of the DUT. If a higher 
latency is tolerable method 3 is seen to give the best 
results. Any error on the output lines are captured within the 
execution of the same task. The cumulative error coverage 

reaches 100% within 3 tasks. But since there can be other 
sources of error, the architecture has to be run for all tasks 
and concurrent check is done at the end of each task. The 
hardware gate count is computed as shown in the table 3 
with the parameters viz. i) Controller outputs to watch (N), 
ii) Tasks to test (T), iii) Bits of program counter are watched 
(M), iv) Groups of invariant outputs(G) and v) Bit counter to 
keep track of the per task execution cycles (C). A D-flip-flop 
(qDff) is taken to be equivalent to four gates.  

The controller in 8051 which is the DUT has 3754 gates. 
For the cases investigated in the present work the hardware 
is computed in terms of number of gates as in Table 3. The 
overhead is nominal for all the three methods. However, 
method OCT-EC3 leads to minimal hardware overhead 
which is 19.21%. The hardware overhead in all the three 
proposed testing methods scales up only with increase in 
the number of tasks (T). Furthermore, if the number of tasks 
is very high, tasks with similar coverage can be omitted for 
concurrent test. 

 
Table 3. Performance metrics for the schemes proposed 

Property 
Proposed Methods 

OCT-EC1 OCT-EC2 OCT-EC3 

Hardware 
calculation 

N Mux + N*T 
Dff + log T 
Mux + M Dff 

+ 36gates 
(comparators) 

Method1 + 
2G gates 

G gates + G Dff + 
G*T Dff + C Dff +  
M Dff 

+ 72 gates 
(comparators) 

Hardware 
overhead 

31.74% 
(N=32; T=8; 
M=8) 

32.59% 
(N=32;T=8; 
M=8;G=16) 

19.21% 
(N=32; T=8; M=8; 
G=16; C=8) 

Error coverage 53.42% 
(cumulative) 

71.31% 
(cumulative) 

100% (in 3 
tasks) 

Error detection 
latency 

Same cycle Same cycle 
Task cycles after 
activation 

 
Scalability 

 
Scales with T 

Scales with 
T 

Scales with T 

Performance 
overhead 

Nil Nil Nil 

Practical 
applicability 

Yes Yes Yes 

 

Table 4. Comparison of the proposed schemes with those reported in literature 

Concurrent 
test methods 

Hardware 
overhead 

(%) 

Performance 
overhead 

Error detection 
coverage (%) 

Error 
detection 
latency 

Design/ Code 
modification 

required 
Scalability 

Applicability in 
modern CPUs 

Main highlights 

DWC[20] >200% Yes ~100% 
Same 
cycle 

Yes Prohibitive Nil 
Generic but area 
overhead is too 

expensive 

CIC [21] Medium Yes (>200%) ~99% ~80cycles Yes Medium Yes 
Excessive execution 

time overhead 

SRS[22] ~13% Yes (~10%) 100% max 8ms Yes Prohibitive Nil 
Hardware/ 

software coupled 
architecture 

IBCT[23] 
~41%(+cont

rol logic) 
Yes >90% 

Same 
cycle 

Yes Prohibitive Nil 
Impractical for larger 

circuits 

WC-CED[24] 57% Yes ~81% 
max 4 
cycles 

Yes Medium Yes 

For superscalar 
schedulers; 

coverage non 
deterministic 

CASP[25] Medium Yes ~100% 
Several 
seconds 

Yes Prohibitive Yes 
Involves hardware/ 
software/external 

storage 
CED-

TPOC[26] 
~200% Yes ~80% 

Same 
cycle 

Yes Prohibitive Nil Dissimilar duplicity 

OCT-EC1 
(Proposed) 

 
31.74% Nil 53.42% 

Same 
cycle 

Nil Very good Yes Generic structure 

OCT-EC2 
(Proposed) 

32.59% Nil 71.31% 
Same 
cycle 

Nil Very good Yes Generic structure 

OCT-EC3 
(Proposed) 

19.21% 
(low) 

Nil 
100% (error 
coverage) 

No. of 
cycles in 

a task 
(max) 

Nil Very good Yes Generic structure 

 

Task No Memory 
address

Signature Cycles

5 0x0101 1010 32

6 0x01A4 0011 40

7 0x01FE 1001 52

8 0x020C 1100 24

OC8051 Decoder

MISR

=
Yes/Pass

No/Fail

Real Time 
Clock

Counter

G1 G2 G3 G4
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A comparison of the proposed methods with the best of 
the existing methods reported in literature in this category is 
presented in Table 4. It is shown that only a few methods 
have applicability in present day architectures. There is no 
performance overhead or design/code changes required for 
the proposed methods. They are also generic in nature i.e. 
they can be implemented for any controller. Consequently 
these are flexible and scalable without a proportional 
scaling of area overhead. OCT-EC3 is the best amongst the 
methods considered in the present analysis. This is 
because the hardware overhead is low, there is no 
performance overhead and it gives 100% line error 
coverage. Moreover, design or code modification is not 
required, scalability is very good and it is applicable for 
modern CPUs. Its fault detection latency is a few cycles. 
The advantage is significant because of the division of the 
code into smaller tasks at the hardware level and each task 
is verified individually for the controller. 

 

Conclusions 
 Three test architectures are proposed in this work for 
control logic of embedded processors. They apply dynamic 
on-field testing and are concurrent in nature where the 
normal execution of the processor is not affected. Since the 
embedded program is divided into tasks and each task is 
verified individually, the error detection latency is kept high 
and the hardware overhead is minimal. Two of them exhibit 
the best latency possible. One of them gives 100% line 
error coverage with a maximum latency of the number 
cycles in the current task. The results are encouraging and 
the work is further being explored to test other controllers. 
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