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Abstract – We present in this work a multi-dimensional resolution of the Drift-Diffusion equations using the numerical scheme ADBQUICKEST 
coupling at time splitting method. This will allow us to study the dynamics of particles in the case of electrical discharge to understand their 
propagation. The obtained results are compared to analytic solutions and to those found in the literature. 
 
Streszczenie. W artykule zaprezentowano wielowymiarowe rozwiązanie równań Drift-Diffusion z wykorzystaniem metody ADBQUICKEST. 
Zaproponowane rozwiązanie pozwala na analizę dynamiki cząstek w stanie wyładowania elektrycznego. Rozwiązanie wielowymiarowe równań 
Drift-Diffusion z wykorzystaniem metody ADBQUICKEST.  
 
Keywords: ADBQUICKEST Scheme, Drift-Diffusion, 3D Modeling, Time Splitting Method 
Słowa kluczowe: metoda ADBQUICKEST, równania Drift-Diffusion, wyładowanie elektryczne 
 

doi:10.12915/pe.2014.08.20 
 
Introduction    

Numerical simulation of the transported particles 
dynamics in an electrical discharge is based on the choice 
of algorithms to solving the numerical model equations of 
this discharge. For example the modeling of filamentary 
gas discharges like streamers. 

Many researchers are interested in numerical modeling 
to solve the Drift-Diffusion equations. A numerical multi-
dimensional modeling requires the use of a powerful 
numerical scheme that can, on the one hand, following the 
strong density gradients and other it is desirable that this 
scheme is flexible and consumes little computing time for a 
simple and easy operation. So the algorithms used must 
meet the constraints of the physical phenomenon and the 
requirements of computation time. Our work is devoted to 
the development of an efficient multi-dimensional numerical 
model to solve the transport equations [1]. 

 

Numerical Model  
The one-dimensional equation of Drift-Diffusion is 

defined by: 
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The Quickest scheme (Quadratic Upstream 
Interpolation for Convective Kinematics with Estimated 
Streaming Terms) was described and developed by 
Leonard [3]. It does not require special knowledge of the 
solution, and can address all points of interval between the 
electrodes in the calculation.  

The use of flow in the Quickest scheme can generate 
the appearance of new maximum density and thus 
reintroduce negative densities. This is the role of the feed 
limiter as ADBQUICKEST technique which is the latest 
among the techniques described in the literature [4][5] [6]. 

The ADBQUICKEST method is a new version of the 
TVD (Total Variation Decrease) Quickest scheme. It was 
presented for the first time in the literature in 2009 by 
Ferreira and Kurokawa [5]. They have discretized the 
continuity equation using the finite difference method in the 
third order. Writing the continuity equation using this type of 
discretization is called the Quickest algorithm. 

Coupling the Quickest scheme with the flow limiter 
ADBQUICKEST present a better alternative for solving 
multi-dimensional problems of Drift-Diffusion equations. 

This technique is based on the calculation of the flow by 
the equation: 

(3)     
2
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c: is the number of current (criterion of Friedrich-Levy: 
CFL) given by the expression:  
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c=c W  

x


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The use of flow 
k

i 1 / 2  in the numerical scheme can 

introduce fictive densities and make appear a new 
maximum density. This is the role of the flow limiter that 
must realize respecting the non-creation of new extrema or 
sharpening existing extremes. 

The ADBQUICKEST scheme flow limiter is given by the 
expression [5][7]: 

(5)             k k

i 1 / 2 i 1 / 2( r ) max 0 ,min 2 r ,G ,2  
        

With:  

(6)            
/( ) 

( )        
2 2 k

i 1 2

1
G 2 c 3 c 1 c r

3 1 c
 

and  

(7)                               
/











k k
k i i 1

i 1 2 k k

i 1 i

n n
r

n n
 

The majority of algorithms for solving the continuity 
equation give the calculated solution in the following form: 

The ADBQUICKEST technique can be developed, also, 
as follows: 

The equation (1) can be written after discretization and 
by the use of the method of finite differences as: 
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if we consider that the velocity is constant within each 
interval, the equations (8) and (9) are expressed only in 
terms of the density n(x,t) and the number of current 
c=ci+1/2, it follows that: 
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k

i 1 / 2n   and k

i 1 / 2n   represent the mean value taken over the 

time interval t of the densities at the center of each cell. 
The primary ADBQUICKEST technical objective is to 

control the values k

i 1 / 2n   and k

i 1 / 2n   from the schema 

Quickest to make strictly positive pattern and so that no 
maximum or minimum appears in the time interval. 

In what follows, we perform numerical tests on the 
algorithm used in this work. These tests will allow us to 
choose the algorithm that more accurately meets the above 
criteria. 

This numerical experience will be carried out by 
spreading the density profile with a constant velocity over 
one period T given by:         

(12)                              
1

0

1
T dx

W( x )
.  

The constant propagation velocity W(x) is equal to 10 
(a.u.). 

The resolution of the continuity equation (without 
diffusion term and with no source term) is made for the 
points number nx equal 100 at 500 along the propagation 
axis. 

The numerical scheme must be able to follow as 
closely as possible the analytical distribution of the initial 
multi-form density n(x,t): rectangular, Gaussian, triangular, 
with a constant drift velocity.  

This density is given at the initial time by the following 
expression:  

 

n( x ) 10  for    0.05 x 0.25 ( a.u.)  

    
2n( x ) 10exp 300( x 0.5 ) for     0.35 x 0.65 ( a.u.)  

 n( x ) 100x 75 for    0.75 x 0.85 ( a.u.)  

  n( x ) 100x 95 for    0.85 x 0.95 ( a.u.)  

n( x ) 0   in the rest of the interval 

 

 

Fig. 1: Calculated solutions at the instant t= T. 
 
Figure (1) shows the calculated results at the instant 

T for a constant propagation velocity. The number nx is 
equal to 100 and 500 and the interval between the 
electrodes is equal to 1 (a.u.).  

We note that the profile of the calculated solution using 
the ADBQUICKEST numerical scheme is consistent with 
the analytical solution profile (for nx=500). 

 
Application of the numerical scheme for transport 
equations ADBQUICKEST 
a. Mono-dimensional resolution  

Because of its qualities of stability, precision and 
fastness, we can say that the use of ADBQUICKEST 

method has opened new perspectives for modeling non-
equilibrium electrical discharges. 

It is proposed to solve the Drift-Diffusion equations in 
Cartesian geometry. We choose to illustrate the formalism, 
the plane-plane configuration.  

To validate our numerical scheme using the 
ADBQUICKEST algorithm, we study the density profile 
solution in the case of test situations where the solution is 
already known. It is the propagation of a rectangular initial 
density profile with drift velocity W(x). This velocity is 
independent of time and may vary according to the position 
according to the following expression: 

(13)                        9W( x ) 1 9 sin ( x )  

It has a maximum for the position of x=0.5 which is ten 
times larger than its value at the beginning and the end of 
the interval (at x=0 and x=1 positions). 
 
The initial density distribution n(x,t) is such that: 
 

n( x ) 10  for    0.05 x 0.25 ( a.u.)  

n( x ) 0   in the rest of the interval 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Calculated solutions at the instants t=0.4T and t= T. 
 

Figure (2) represents the analytical solution and the 
calculated solution according to the position by using the 
ADBQUICKEST scheme at the instants t=0.4T and t=T, for 
the points number nx equal 100 at 500. 

We note that the profiles of the calculated solution (for 
nx=500) at t=0.4T and t=T are substantially similar to the 
profiles of the analytic solution to these instants.  
The peak profile obtained from the analytical solution by 
Davies [8] at t=0.4T has been almost achieved. At the 
instant t=T, we are seeing a slight distortion in the corners 
of the rectangular form.  
This behavior is due to the discontinuity at the edges of the 
profile used and the correction made by the 
ADBQUICKEST scheme that ensures the removal of any 
extremum. 

The calculation of the Mean Absolute Error (MAE), tells 
us about the accuracy and quality of the used method. The 
absolute error is calculated after one period T depending 
on the value of the position and using many values of the 
CFL (10-3 to 0.8).  
The choice of these values of the CFL is justified by the 
different research done in the literature [9][10][11]. This 
error is given by the following equation: 

(14)           
nx

T analytic

i i
i 1

x

1
M A E  n n

n 
                 

P o s itio n  (a .u .)

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0

D
en

si
ti

es
 (

a.
u

.)

0

2

4

6

8

1 0

1 2

1 4

1 6

A n a lytic a l s o lu tio n
n x= 1 0 0

n x= 5 0 0

t = T

t = 0 .4  T

A D B Q U IC K E S T  s c h e m e

P o s itio n  (a .u .)

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0

D
en

si
ti

es
 (

a.
u

.)

0

2

4

6

8

1 0

1 2
A n a ly tic a l  s o lu t io n
n x = 1 0 0

n x = 5 0 0
A D B Q U IC K E S T  s c h e m e



86                                                                                       PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 8/2014 

Fig. 3:  ADBQUICKEST Mean Absolute Errors. 
 

Figure (3) shows the variation in the mean absolute 
error as the function for several values of nx points number 
(100 to 500 points) and CFL (10-3 to 0.8). We can notice 
that the value of the mean absolute error is almost 
independent of the CFL (nx eq. 100 to 500) and inversely 
proportional to the nx number. We conclude that the 
ADBQUICKEST is a conservative scheme. 

 

b. Two-dimensional resolution  
The extension of the previous one-dimensional 

resolution to two dimensions in cylindrical coordinates can 
be considered using the Time Splitting method.  
This method is to consider the two-dimensional numerical 
problem described by the following equation: 
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The equation (15) can be reduced to series problems in 
one dimension [12] [13] [14].  
This means that the transport of the particles which occurs 
synchronously linked in the space and time will be carried 
separately by solving first the transport equation in the axial 
direction: 
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The calculated density is introduced to solve this 
equation in the radial direction: 
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With: Wz and Wr the axial and radial drift velocities. The 
diffusions coefficients (Dz and Dr) are considered zero. 

To validate our numerical scheme in 2D, we will use the 
calculation parameters proposed by Flitti [15].  
This is to follow the spatiotemporal evolution of a known 
form initial density. The axial and radial points number 

equal to 100 (r and z 20,10     (a.u.)). The diffusion 

coefficient and the source term are zero. The axial and 
radial drift velocities are the same as those used by Flitti 
[15].  

The initial density used in this test is a Gaussian profile 
given by the following expression: 

(20)                        
      


2 2

0 0
2

z z r r

1n( z,r ) n  e   (a.u.) 
 

For which; the values of n1, z0, r0 and 2 are given 
respectively as follows: 1012, 0.9, 0.9 and 0.04 in arbitrary 
units. 

Figure 4 shows the 2D Gaussian profile of the initial 
density presented in arbitrary units.  
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Fig.4: Initial density in arbitrary units. 
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Fig. 5: Density propagation in diagonal direction (a.u.). 
 

The diagonal propagation of the density is due to axial 
and radial drift velocities of equal values.	This profile of the 
density, as shown in Figure (5) is consistent with that found 
by the Scharfetter and Gummel scheme used in Benaired 
thesis [9]. 

 

c. Three-dimensional resolution  
The three-dimensional resolution of the Drift-Diffusion 

equation for particles density can be done by adopting the 
above method called Time Splitting: 
In the longitudinal direction:  
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k 1 k k k

i , j ,l i , j ,l i 1 / 2 , j ,l i 1 / 2 , j ,ln n
0

 t  x

 
 


  

   

In the transversal direction:  
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According to the tangential direction:  
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Then, the source term is introduced:  
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In order to validate the numerical scheme in 3D, we 
used this time an initial density of spherical form that is 
shown in Figure (6) with constant velocity propagation 
equal to 10 (a.u.) in the longitudinal direction. 

The points number in the longitudinal direction is 

nx=120 (x  0,0.5  (a.u.)). In the transversal and tangential 

directions ny=nz=60 ((y and z  0.2,0.2   (a.u.)). The 
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initial density used in this test is given by the following 
expression: 

 2 2 2

2

x 0.1 y z

1n( x , y , z ) n  e 

   

  (a.u.) 

For which; the values of n1 and  are given respectively 
as follows: 1014 and 0.027 in arbitrary units. 

 

 
Fig. 6. 3D representation at t=0 of initial density log10(n(x,y,z,t)). 

 

Figure (7) shows the density propagation at the time 
 t = 0.4T along the axis without deformation in the initial 
density profile, confirming that the ADBQUICKEST is a 
conservative scheme. 

 

Fig. 7. 3D representation at t=0.4T of density log10(n(x,y,z,t)). 
 
The presentation of the results in three dimensions allows 
us to see the volume distribution of the calculated density. 
This presentation is very different from the classical 
presentation includes only 2D surfaces in three 
dimensional space. 
 
Conclusion 

The objective of this study was to develop an efficient 
numerical model based on the ADBQUICKEST scheme for 
solving Drift-Diffusion equations in multi-dimensional 
geometry. To validate our numerical scheme using the 
ADBQUICKEST algorithm in multi-dimensions, we have 
compared the obtained results to the analytic solutions 
founded in the literature. This validate model allow us, in 
the future, to study the dynamics of charged particles in the 
case of high pressure electrical discharge to a better 
understanding of the evolution and propagation of 
ionization waves in situations of high density variations and 
electric field. 
 
 

Nomenclature 
n Number density 
Φ Species flux 
W Drift velocity 
D Diffusion coefficient of species 
c Current number criterion of Friedrich-Levy 
∆t Temporal step 
∆x Longitudinal spatial step 
∆y Transversal spatial step 
∆z Tangential spatial step 
∆r Radial spatial step 
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