Instytut Energetyki Instytut Badawczy(1), Politechnika Łódzka Instytut Elektroenergetyki (2)

Analiza momentów skrętnych na wale turbozespołu 1308 MVA

Streszczenie. Przedstawiono analizę momentów skrętnych na wale turbozespołu 1308 MVA występujących podczas rozmaitych zakłóceń sieciowych, obliczonych za pomocą uniwersalnego modelu matematycznego.

Abstract. Using a universal mathematical model of a turbine-generator units is calculated torsional shaft moment under different operating conditions. (Analyze torsional shaft moment of turbine-generator 1308 MVA).

Słowa kluczowe. Turbozespół, momenty skrętne, drgania, wytrzymałość zmęczeniowa materiału. Keywords. Turbine-generator, torsional shaft moment, vibrations, fatigue strength

Wstęp

Na problemy związane z drganiami skrętnymi wałów zwrócono uwagę analizując awarie dużych turbozespołów w latach siedemdziesiątych w Europie [1] i Stanach Zjednoczonych [2]. Opracowano środki zaradcze jak np. okresowe zaostrzone przeglądy stanu wirników turbozespołów oraz specjalne wymagania dotyczące synchronizacji, SPZ itp. [3].

Podczas turbozespołów systemie pracy w elektroenergetycznym ciągle występują nienormalne stany pracy, w wyniku których powstają skrętne kołysania wałów turbozespołów prowadzące do kumulacji zjawisk zmęczeniowych w materiale wirników. Wyniki badań obliczeniowych wykonywanych przez wielu autorów wykazują, że przy skrętnych kołysaniach mogą powstać znaczne przemienne momenty skrętne (zwarcia zewnętrzne, SPZ, błędna synchronizacja, rezonans podsynchroniczny), które powodują zmęczenie niskoczęstotliwościowe, jak również mniejsze przemienne momenty skrętne (zrzuty mocy, praca asynchroniczna) powodujące zmeczenie wysokiej częstotliwości. Systemy diagnostyki turbozespołów dużej mocy, zawierające diagnostykę czasu życia wałów, powinny uwzględniać wszystkie rodzaje nienormalnych stanów pracy.

Przy analizie wpływu skrętnych kołysań na wał turbozespołu wyjściowym etapem jest wyznaczenie elektromagnetycznego momentu obrotowego [4].

Moment elektromagnetyczny turbogeneratora, zmiana którego jest pierwotną przyczyną drgań skrętnych w jednostkach względnych określa się wyrażeniem: (1)

$$M_{em} = \frac{\delta W_{m}}{\delta \alpha}$$

gdzie: W_m - koenergia pola magnetycznego turbogeneratora, α - kąt między osią uzwojenia wzbudzenia a osią fazy *L1* stojana, charakteryzujący położenie dwubiegunowego wirnika turbogeneratora w dowolnym momencie czasu.

Zgodnie z obliczeniami największy wpływ turbogeneratora na zmniejszenie momentu skrętnego ma uwzględnienie jego tłumiącego działania w stanach rezonansowych i błędnym SPZ, odpowiednio o 49 % i 31 % a przy zwarciach tylko o 5 % [5].

Obliczenia wykazały, że absolutne wartości uszkodzalności włączając stany rezonansowe są niewielkie. Nie znaczy to jednak, że diagnostyka wytrzymałości zmęczeniowej materiału wałów przy skrętnych kołysaniach nie jest ważna. Większość rozpatrywanych procesów przejściowych powtarza się wielokrotnie, a to przy długotrwałej eksploatacji ma istotny wpływ na zmęczeniową wytrzymałość materiału wałów.

Praktyczne zastosowanie matematycznego modelu

charakteryzuje się możliwościami wyliczenia w różnych stanach chwilowych wartości prądów i napięć fazowych, momentu elektromagnetycznego, które są wyjściowymi informacjami dla zbudowania i funkcjonowania systemu diagnostycznego turbozespołu.

W kraju na problem ten zwrócono uwagę na przełomie wieków [6,7]. Przedstawiono wówczas przyczyny i objawy występowania drgań skrętnych wałów oraz podjęto ich badania symulacyjne. Omówiono występujące za granicą przypadki awarii turbozespołów związane z drganiami skrętnymi wału i ich diagnostyką. Wykonano obliczenia symulacyjne drgań skrętnych wałów turbozespołów 200 MW [8,9] i 360 MW [10] stosując uniwersalny model matematyczny EMTP (Electromagnetics Transients Program – Program Obliczeń Przejściowych Zjawisk Elektromagnetycznych) [11].

Model turbozespołu w programie EMTP

Możliwe jest symulowanie dynamiki turbozespołu z dowolną liczbą oddzielnych mas wirujących osadzonych na wspólnym wale. Przyjęto, że każda masa jest sztywna i połączona sprężyście z sąsiadującymi masami.

Każda masa, z wyjątkiem turbogeneratora ma przypisaną moc napędzającą, która może być stała lub zmieniać się w wyniku działania układów regulacyjnych.

W obliczeniach założono, że moment elektromagnetyczny działa na wirnik turbogeneratora jako na masę skupioną. Nie wykonywano więc obliczenia rozkładu momentu wzdłuż długości wirnika. Można przyjąć równomierny rozkład momentu wzdłuż długości wirnika.

Elektryczna część modelu turbozespołu

Przedstawiony na rysunku 1 trójfazowy model turbogeneratora stosowany w programie EMTP zawiera następujące uzwojenia:

- trzy uzwojenia fazowe stojana przyłączone do sieci (prądy I_a, I_b, I_c),
- uzwojenie wzbudzenia dające strumień w osi d (prąd I_f),
- zastępcze uzwojenie tłumiące w osi d (prąd Ikd),
- zastępcze uzwojenie reprezentujące efekt działania prądów wirowych (prąd I_g),
- zastępcze uzwojenie tłumiące w osi q (prąd Ika).

Program umożliwia obliczenie stanów przejściowych przy uwzględnieniu nieliniowej charakterystyki magnesowania układu wzbudzenia.

Jako dane wejściowe do modelowania turbogeneratora mogą posłużyć rezystancje i indukcyjności uzwojeń uzyskane od producenta, zestawione w tabeli 1.

Jeśli istnieje potrzeba (dla dłuższych czasów symulacji) można zamodelować układy regulacyjne wzbudzenia i mocy mechanicznej. W takim przypadku potrzebna jest struktura blokowa układów regulacji (transmitancje i jej parametry).

Rys.1. Zastępczy schemat elektryczny turbogeneratora

I abela 1. Dane wej	eratora	
Oznaczenie	Nazwa	Jednostka
S	Moc znamionowa	MVA
Un	Napięcie znamionowe	kV
NP	Liczba biegunów (nie par biegunów)	-
Iwzb	Prąd wzbudzenia przy napięciu znamionowym nieobciążonego generatora	A
Ra	Rezystancja twornika	j.w.
Xl	Reaktancja rozproszenia twornika	j.w.
Xd, Xd', Xd''	Reaktancja synchroniczna, przejściowa i nadprzejściowa w osi <i>d</i>	j.w.
Xq, Xq', Xq''	Reaktancja synchroniczna, przejściowa i nadprzejściowa w osi <i>q</i>	j.w.
Tdo',Tdo'', Tqo', Tqo''	Stałe czasowe dla otwartych obwodów <i>d i q</i>	S
X0	Reaktancja kolejności zerowej	j.w.
Rn, Xn	Impedancja uziemienia punktu gwiazdowego generatora	j.w.

Mechaniczna część modelu turbozespołu

Na rysunku 2 przedstawiono układ mas wirujących osadzonych na wspólnym wale.

Do odwzorowania turbozespołów niezbędny jest model wielomasowy np. podczas badania rezonansów podsynchronicznych. Modeluje się wówczas od 6 do 20 mas wirujących.

W tabeli 2 podano zestawienie danych potrzebnych do zamodelowania wirującego wielomasowego układu turbozespołu.

Rys.2. Struktura turbozespołu w badanym bloku 1308 MVA.

(J - momenty bezwładności mas wirujących, D - stałe tłumienia, K - stała sprężystości, T - momenty siły (mechaniczne i elektromechaniczny)

Tabela 2. Zestawienie danych potrzebnych do zamodelowania wirującego wielomasowego układu turbozespołu.

Oznaczenie	Nazwa	Jednostka
T_i	Udział momentu (lub mocy) napędzającego w całkowitym momencie (lub mocy) napędzającym, nie dotyczy turbogeneratora	jw
J_i	Moment bezwładności	kg m²·10⁵
$D_{i,i+I}$	Współczynnik tłumienia wg wzoru (2) nie dotyczy ostatniej masy wirującej	N m s rad ⁻¹
D_i	Współczynnik tłumienia wg wzoru (3)	N m s rad ⁻¹
D_{i_abs}	Współczynnik tłumienia wg wzoru (4)	N m s rad ⁻¹
$K_{i,i+1}$	Stała sprężystości połączenia <i>i,i+1</i> wg wzoru (5) nie dotyczy ostatniej masy wirującej	N m s rad ⁻¹ 10 ⁶

Oznaczenia w tabeli 2: (2)

(3)

(4)

(5)

$$T_i = D_{i,i+1} \cdot (\omega_i - \omega_{i+1})$$

$$T_i = D_i \cdot (\omega_i - \omega_i)$$

$$T_i = D_{i_abs} \cdot \omega_i$$

 ω_{c}

$$T_{spr,i} = -T_{spr,i+1} = K_{i,i+1} \cdot (\delta_i - \delta_{i+1})$$

 T_i - moment tłumiący działający na masę i, ω_i - prędkość obrotowa masy i, ω_s - prędkość synchroniczna, $T_{spr,i}$ - moment skręcający wału, δ_i - położenie kątowe masy i

Wielkości wyjściowe (wyniki) z obliczeń symulacyjnych podano w tabeli 3.

Tabela 3. Wielkości wyjściowe (wyniki) z obliczeń symulacyjnych.

$\begin{array}{c c} I_{a}, I_{b}, I_{c} & \operatorname{Prqdy} fazowe stojana generatora \\ I_{d} & \operatorname{Prqd} w \operatorname{osi} d \operatorname{uzwojenia} stojana \\ I_{q} & \operatorname{Prqd} w \operatorname{osi} q \operatorname{uzwojenia} stojana \\ I_{wzb} & \operatorname{Prqd} wzbudzenia \\ I_{d_d!} & \operatorname{Prqd} w zastępczym uzwojeniu tłumiącym w osi d uzwojenia stojana \\ I_{wir} & \operatorname{Prqd} w zastępczym uzwojeniu odwzorowującym efekt strat wiroprądowych \\ I_{q_d!} & \operatorname{Prqd} w zastępczym uzwojeniu tłumiącym w osi q uzwojenia stojana \\ U_{d} & \operatorname{Napięcie} na uzwojeniu d stojana \\ U_{d} & \operatorname{Napięcie} na uzwojeniu q stojana \\ U_{wzb} & \operatorname{Napięcie} wzbudzenia \\ \\ & Wielkości elektromechaniczne i mechaniczne \\ \hline M_{F} & Siła magnetomotoryczna w szczelinie, [A] \\ M_{A} & Kqt między składowymi w osi q i d siły magnetomotorycznej w szczelinie [rad] \\ \hline T_{gen} & \operatorname{Moment}$ elektromagnetyczny wzbudnicy \\ \hline \psi_{d} & Strumień magnetyczny w osi d \\ \psi_{q} & Strumień magnetyczny w osi q \\ \hline \phi_{i} & Kqt określający położenie masy i \\ \hline m_{i} & \operatorname{Moment} mechaniczny skrętny w wale między masą i oraz i+1 \\ \end{array}	Wielkości elektryczne							
$\begin{array}{c c} I_d & \operatorname{Prqd} w \operatorname{osi} d \operatorname{uzwojenia} \operatorname{stojana} \\ \hline I_q & \operatorname{Prqd} w \operatorname{osi} q \operatorname{uzwojenia} \operatorname{stojana} \\ \hline I_{wzb} & \operatorname{Prqd} w zastępczym uzwojeniu tłumiącym w osi d uzwojenia stojana \\ \hline I_{d_d} & \operatorname{Prqd} w zastępczym uzwojeniu tłumiącym w osi d uzwojenia stojana \\ \hline I_{wir} & \operatorname{Prqd} w zastępczym uzwojeniu odwzorowującym efekt strat wiroprądowych \\ \hline I_{q_d} & \operatorname{Prqd} w zastępczym uzwojeniu tłumiącym w osi q uzwojenia stojana \\ \hline U_d & \operatorname{Napięcie} na uzwojeniu d stojana \\ \hline U_q & \operatorname{Napięcie} na uzwojeniu q stojana \\ \hline U_wzb & \operatorname{Napięcie} wzbudzenia \\ \hline Wielkości elektromechaniczne i mechaniczne \\ \hline M_F & Siła magnetomotoryczna w szczelinie, [A] \\ \hline M_A & Kąt między składowymi w osi q i d siły magnetomotorycznej w szczelinie [rad] \\ \hline T_{gen} & \operatorname{Moment}$ elektromagnetyczny turbogeneratora \\ \hline T_{wzb} & \operatorname{Moment} elektromagnetyczny w osi d \\ \hline \psi_q & Strumień magnetyczny w osi d \\ \hline \psi_q & Strumień magnetyczny w osi q \\ \hline \delta_i & Kąt określający położenie masy i \\ \hline a_i & \operatorname{Prędkośc kątowa masy i} \\ \hline T_i & \operatorname{Moment}	I_a , I_b , I_c ,	Prądy fazowe stojana generatora						
$\begin{array}{c c} I_q & \operatorname{Prqd} w \operatorname{osi} q \operatorname{uzwojenia stojana} \\ \hline I_{wcb} & \operatorname{Prqd} wzbudzenia \\ \hline I_{d_dt} & \operatorname{Prqd} w \operatorname{zastępczym} uzwojeniu tłumiącym w osi d uzwojenia stojana \\ \hline I_{wir} & \operatorname{Prqd} w \operatorname{zastępczym} uzwojeniu odwzorowującym efekt strat wiroprądowych \\ \hline I_{q_dt} & \operatorname{Prqd} w \operatorname{zastępczym} uzwojeniu tłumiącym w osi q uzwojenia stojana \\ \hline U_d & \operatorname{Napięcie} na uzwojeniu d stojana \\ \hline U_d & \operatorname{Napięcie} na uzwojeniu q stojana \\ \hline U_wzb & \operatorname{Napięcie} wzbudzenia \\ \hline Wielkości elektromechaniczne i mechaniczne \\ \hline M_F & Siła magnetomotoryczna w szczelinie, [A] \\ \hline M_A & Kąt między składowymi w osi q i d siły magnetomotorycznej w szczelinie [rad] \\ \hline T_{gen} & \operatorname{Moment}$ elektromagnetyczny wzbudnicy \\ \hline \psi_d & Strumień magnetyczny w osi d \\ \psi_q & Strumień magnetyczny w osi q \\ \hline \phi_i & Kąt określający położenie masy i \\ \hline T_i & \operatorname{Moment} mechaniczny skrętny w wale między masą <i>i</i> oraz <i>i</i> +1 \\ \end{array}	I_d	Prąd w osi d uzwojenia stojana						
$\begin{array}{c c} I_{wcb} & \operatorname{Prqd} wzbudzenia \\ \hline I_{d_{cl}tl} & \operatorname{Prqd} w zastępczym uzwojeniu tłumiącym w osi d uzwojenia stojana \\ \hline I_{wir} & \operatorname{Prqd} w zastępczym uzwojeniu odwzorowującym efekt strat wiroprądowych \\ \hline I_{q_{cl}tl} & \operatorname{Prqd} w zastępczym uzwojeniu tłumiącym w osi q uzwojenia stojana \\ \hline U_d & \operatorname{Napięcie} na uzwojeniu d stojana \\ \hline U_q & \operatorname{Napięcie} na uzwojeniu q stojana \\ \hline U_{wcb} & \operatorname{Napięcie} wzbudzenia \\ \hline & Wielkości elektromechaniczne i mechaniczne \\ \hline & M_F & Siła magnetomotoryczna w szczelinie, [A] \\ \hline & M_A & Kąt między składowymi w osi q i d siły magnetomotorycznej w szczelinie [rad] \\ \hline & T_{gen} & Moment elektromagnetyczny turbogeneratora \\ \hline & T_{wcb} & Moment elektromagnetyczny w osi d \\ \hline & \psi_{\prime q} & Strumień magnetyczny w osi q \\ \hline & \phi_i & Kąt określający położenie masy i \\ \hline & T_i & Moment mechaniczny skrętny w wale między masą i oraz i+1 \\ \end{array}$	I_q	Prąd w osi q uzwojenia stojana						
$\begin{array}{c c} I_{d_d} & \operatorname{Pr} q d w zastępczym uzwojeniu tłumiącym w osi d uzwojenia stojana \\ \hline I_{wir} & \operatorname{Pr} q d w zastępczym uzwojeniu odwzorowującym efekt strat wiroprądowych \\ \hline I_{q_d} & \operatorname{Pr} q d w zastępczym uzwojeniu tłumiącym w osi q uzwojenia stojana \\ \hline U_d & \operatorname{Napięcie na uzwojeniu d stojana \\ \hline U_q & \operatorname{Napięcie na uzwojeniu q stojana \\ \hline U_{wzb} & \operatorname{Napięcie wzbudzenia \\ \hline \hline Wielkości elektromechaniczne i mechaniczne \\ \hline M_F & Siła magnetomotoryczna w szczelinie, [A] \\ \hline M_A & Kąt między składowymi w osi q i d siły magnetomotorycznej w szczelinie [rad] \\ \hline T_{gen} & \operatorname{Moment}$ elektromagnetyczny turbogeneratora $T_{wzb} & \operatorname{Moment}$ elektromagnetyczny w osi d $\psi_{\prime q} & \operatorname{Strumień magnetyczny w osi q} \\ \phi_i & Kąt określający położenie masy i \\ \hline D_i & \operatorname{Moment}$ mechaniczny skrętny w wale między masą i oraz $i+1$	I_{wzb}	Prąd wzbudzenia						
uzwojenia stojana I_{wir} Prąd w zastępczym uzwojeniu odwzorowującym efekt strat wiroprądowych $I_{q.fl}$ Prąd w zastępczym uzwojeniu tłumiącym w osi q uzwojenia stojana U_d Napięcie na uzwojeniu d stojana U_q Napięcie na uzwojeniu q stojana U_q Napięcie wzbudzenia W_{wzb} Napięcie ektromechaniczne i mechaniczne M_F Siła magnetomotoryczna w szczelinie, [A] M_A Kąt między składowymi w osi q i d siły magnetomotorycznej w szczelinie [rad] T_{gen} Moment elektromagnetyczny wzbudnicy ψ_{rd} Strumień magnetyczny w osi d ψ_{rq} Strumień magnetyczny w osi q δ_i Kąt określający położenie masy i ω_i Prędkość kątowa masy i T_i Moment mechaniczny skrętny w wale między masą i 	$I_{d_{tt}}$	Prąd w zastępczym uzwojeniu tłumiącym w osi d						
$ \begin{array}{c c} I_{wir} & \operatorname{Pr} q d w zastępczym uzwojeniu odwzorowującym efekt strat wiroprądowych \\ \hline I_{q_i!} & \operatorname{Pr} q d w zastępczym uzwojeniu tłumiącym w osi q uzwojenia stojana \\ \hline U_d & \operatorname{Napięcie na uzwojeniu d stojana} \\ \hline U_q & \operatorname{Napięcie na uzwojeniu q stojana} \\ \hline U_{wzb} & \operatorname{Napięcie wzbudzenia} \\ \hline & \\ \hline \hline & \\ \hline & \\ \hline & \hline \hline & \\ \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline \hline & \hline \hline \\ \hline \hline & \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\$		uzwojenia stojana						
efekt strat wiroprądowych I_{q_il} Prąd w zastępczym uzwojeniu tłumiącym w osi q uzwojenia stojana U_d Napięcie na uzwojeniu d stojana U_q Napięcie na uzwojeniu q stojana U_q Napięcie wzbudzenia W_{wzb} Napięcie wzbudzenia $Wielkości elektromechaniczne i mechaniczneM_FSiła magnetomotoryczna w szczelinie, [A]M_AKąt między składowymi w osi q i d siłymagnetomotorycznej w szczelinie [rad]T_{gen}Moment elektromagnetyczny turbogeneratoraT_{wzb}Moment elektromagnetyczny w osi d\psi_qStrumień magnetyczny w osi q\delta_iKąt określający położenie masy i\omega_iPrędkość kątowa masy iT_iMoment mechaniczny skrętny w wale między masą ioraz i+1$	I_{wir}	Prąd w zastępczym uzwojeniu odwzorowującym						
$I_{q_{_ll}}$ Prąd w zastępczym uzwojeniu tłumiącym w osi q uzwojenia stojana U_d Napięcie na uzwojeniu d stojana U_q Napięcie na uzwojeniu q stojana U_q Napięcie wzbudzenia W_{wzb} Napięcie wzbudzenia M_{wzb} Siła magnetomotoryczna w szczelinie, [A] M_F Siła magnetomotoryczna w szczelinie [rad] M_A Kąt między składowymi w osi q i d siły magnetomotorycznej w szczelinie [rad] T_{gen} Moment elektromagnetyczny turbogeneratora T_{wzb} Moment elektromagnetyczny w osi d ψ_q Strumień magnetyczny w osi d ψ_q Strumień magnetyczny w osi q δ_i Kąt określający położenie masy i ω_i Prędkość kątowa masy i T_i Moment mechaniczny skrętny w wale między masą i oraz $i+1$		efekt strat wiroprądowych						
uzwojenia stojana U_d Napięcie na uzwojeniu d stojana U_q Napięcie na uzwojeniu q stojana U_q Napięcie wzbudzenia W_{wzb} Napięcie wzbudzenia $Wielkości elektromechaniczne i mechaniczneM_FSiła magnetomotoryczna w szczelinie, [A]M_AKąt między składowymi w osi q i d siłymagnetomotorycznej w szczelinie [rad]T_{gen}Moment elektromagnetyczny turbogeneratoraT_{wzb}Moment elektromagnetyczny wsi d\psi_qStrumień magnetyczny w osi d\psi_qStrumień magnetyczny w osi q\delta_iKąt określający położenie masy i\omega_iPrędkość kątowa masy iT_iMoment mechaniczny skrętny w wale między masą ioraz i+1$	$I_{q_{tt}}$	Prąd w zastępczym uzwojeniu tłumiącym w osi q						
U_d Napięcie na uzwojeniu d stojana U_q Napięcie na uzwojeniu q stojana U_{wzb} Napięcie wzbudzenia W_{wzb} Napięcie wzbudzenia $Wielkości elektromechaniczne i mechaniczneM_FSiła magnetomotoryczna w szczelinie, [A]M_AKąt między składowymi w osi q i d siłymagnetomotorycznej w szczelinie [rad]T_{gen}Moment elektromagnetyczny turbogeneratoraT_{wzb}Moment elektromagnetyczny wzbudnicy\psi_dStrumień magnetyczny w osi d\psi_qStrumień magnetyczny w osi q\delta_iKąt określający położenie masy i\omega_iPrędkość kątowa masy iT_iMoment mechaniczny skrętny w wale między masą ioraz i+1$		uzwojenia stojana						
U_q Napięcie na uzwojeniu q stojana U_{wzb} Napięcie wzbudzenia $Wielkości elektromechaniczne i mechaniczneM_FSiła magnetomotoryczna w szczelinie, [A]M_AKąt między składowymi w osi q i d siłymagnetomotorycznej w szczelinie [rad]T_{gen}Moment elektromagnetyczny turbogeneratoraT_{wzb}Moment elektromagnetyczny wzbudnicy\psi_dStrumień magnetyczny w osi d\psi_qStrumień magnetyczny w osi q\delta_iKąt określający położenie masy i\omega_iPrędkość kątowa masy iT_iMoment mechaniczny skrętny w wale między masą ioraz i+1$	U_d	Napięcie na uzwojeniu d stojana						
U_{wzb} Napięcie wzbudzeniaWielkości elektromechaniczne i mechaniczne M_F Siła magnetomotoryczna w szczelinie, [A] M_A Kąt między składowymi w osi q i d siły magnetomotorycznej w szczelinie [rad] T_{gen} Moment elektromagnetyczny turbogeneratora T_{wzb} Moment elektromagnetyczny wzbudnicy ψ_d Strumień magnetyczny w osi d ψ_q Strumień magnetyczny w osi q δ_i Kąt określający położenie masy i ω_l Prędkość kątowa masy i T_i Moment mechaniczny skrętny w wale między masą i oraz $i+1$	U_q	Napięcie na uzwojeniu q stojana						
Wielkości elektromechaniczne i mechaniczne M_F Siła magnetomotoryczna w szczelinie, [A] M_A Kąt między składowymi w osi q i d siły magnetomotorycznej w szczelinie [rad] T_{gen} Moment elektromagnetyczny turbogeneratora T_{wcb} Moment elektromagnetyczny wzbudnicy ψ_d Strumień magnetyczny w osi d ψ_q Strumień magnetyczny w osi q δ_i Kąt określający położenie masy i ω_l Prędkość kątowa masy i T_i Moment mechaniczny skrętny w wale między masą i oraz $i+1$	U_{wzb}	Napięcie wzbudzenia						
M_F Siła magnetomotoryczna w szczelinie, [A] M_A Kąt między składowymi w osi q i d siły magnetomotorycznej w szczelinie [rad] T_{gen} Moment elektromagnetyczny turbogeneratora T_{wzb} Moment elektromagnetyczny wzbudnicy ψ_d Strumień magnetyczny w osi d ψ_q Strumień magnetyczny w osi q δ_i Kąt określający położenie masy i ω_i Prędkość kątowa masy i T_i Moment mechaniczny skrętny w wale między masą i oraz $i+1$	W	ielkości elektromechaniczne i mechaniczne						
M_A Kąt między składowymi w osi q i d siły magnetomotorycznej w szczelinie [rad] T_{gen} Moment elektromagnetyczny turbogeneratora T_{wzb} Moment elektromagnetyczny wzbudnicy ψ_d Strumień magnetyczny w osi d ψ_q Strumień magnetyczny w osi q δ_i Kąt określający położenie masy i ω_i Prędkość kątowa masy i T_i Moment mechaniczny skrętny w wale między masą i oraz $i+1$	M_F	Siła magnetomotoryczna w szczelinie, [A]						
magnetomotorycznej w szczelinie [rad] T_{gen} Moment elektromagnetyczny turbogeneratora T_{wcb} Moment elektromagnetyczny wzbudnicy ψ_d Strumień magnetyczny w osi d ψ_q Strumień magnetyczny w osi q δ_i Kąt określający położenie masy i ω_i Prędkość kątowa masy i T_i Moment mechaniczny skrętny w wale między masą i oraz $i+1$	M_A	Kąt między składowymi w osi q i d siły						
$\begin{array}{c c} T_{gen} & \mbox{Moment elektromagnetyczny turbogeneratora} \\ \hline T_{wcb} & \mbox{Moment elektromagnetyczny wzbudnicy} \\ \hline \psi_{d} & \mbox{Strumień magnetyczny w osi } d \\ \hline \psi_{q} & \mbox{Strumień magnetyczny w osi } q \\ \hline \delta_{i} & \mbox{Kąt określający położenie masy i} \\ \hline \omega_{i} & \mbox{Prędkość kątowa masy } i \\ \hline T_{i} & \mbox{Moment mechaniczny skrętny w wale między masą } i \\ & \mbox{oraz } i+l \end{array}$		magnetomotorycznej w szczelinie [rad]						
T_{wcb} Moment elektromagnetyczny wzbudnicy ψ_d Strumień magnetyczny w osi d ψ_q Strumień magnetyczny w osi q δ_i Kąt określający położenie masy i ω_i Prędkość kątowa masy i T_i Moment mechaniczny skrętny w wale między masą i oraz $i+1$ Oraz $i+1$	T_{gen}	Moment elektromagnetyczny turbogeneratora						
ψ_d Strumień magnetyczny w osi d ψ_q Strumień magnetyczny w osi q δ_i Kąt określający położenie masy i ω_i Prędkość kątowa masy i T_i Moment mechaniczny skrętny w wale między masą i oraz $i+1$	T_{wzb}	Moment elektromagnetyczny wzbudnicy						
ψ_q Strumień magnetyczny w osi q δ_i Kąt określający położenie masy i ω_i Prędkość kątowa masy i T_i Moment mechaniczny skrętny w wale między masą i oraz $i+1$	ψ_d	Strumień magnetyczny w osi d						
δ _i Kąt określający położenie masy i ω _i Prędkość kątowa masy i T _i Moment mechaniczny skrętny w wale między masą i oraz i+1	ψ_q	Strumień magnetyczny w osi q						
ω _i Prędkość kątowa masy i T _i Moment mechaniczny skrętny w wale między masą i oraz i+1	δ_i	Kąt określający położenie masy i						
T _i Moment mechaniczny skrętny w wale między masą i oraz i+1	ω_i	Prędkość kątowa masy i						
oraz i+1	T_i	Moment mechaniczny skrętny w wale między masą i						
		oraz <i>i</i> +1						

Dane elektryczne i mechaniczne modelowanego turbozespołu

Parametry techniczne badanego turbogeneratora o mocy pozornej 1308 MVA podano w tabeli 4.

Parametr	Oznaczenie	Wymiar	Wartość
Moc pozorna	S.	MVA	1308
Moc czynna	$\frac{\sim}{P_n}$	MW	1111.8
Współczynnik mocy	cos ø	-	0.85
Napiecie znamionowe			
stoiana	U_n	kV	27
Prad stoiana	I_n	kA	27.97
Napiecie wirnika	U_w	V	640
Napiecie wirnika przy biegu	T 7		400
jałowym	$U_{w\theta}$	V	163
Prad wirnika	I_w	А	698,4
Prad wirnika przy biegu	T	٨	2000.0
jałowym	I_{w0}	A	206,0
Częstotliwość	f_n	Hz	50
Prędkość obrotowa	n	obr./min.	3000
Sprawność generatora	η	%	98,94
Asymetria obciażenia	a a 2.		
dopuszczalna krótkotrwale	$(I_2/I_{nG})^2 t$	-	5,0
Stosunek zwarcia	k_z	-	0,5
Rezystancja twornika	R_a	j. w.	0,002
Rezvstancia wirnika	R_{W}	Ω	0.079
Reaktancia koleiności			
zerowei	X_0	J. W.	0,12
Reaktancia rozproszenia	N/		o /=
twornika	X_I	J. W.	0,17
Reaktancja synchroniczna w	V	:	2.2
osi d	X_d	J. W.	2,2
Reaktancja przejściowa w	<i>v</i> '	:	0.07
osi d	Λ_d	J. W.	0,27
Reaktancja podprzejściowa	V."	i w	0.22
w osi d	Λ_d	j. w.	0,22
Reaktancja synchroniczna w	Y	i w	22
osi q	Λ_q	j. w.	2,2
Reaktancja przejściowa w	<i>Y</i> '	i w	0 44
osi q	Λ_q	j. w.	0,77
Reaktancja podprzejściowa	<i>X</i> "	i w	0.22
w osi q	<i>11q</i>	j. .	0,22
Stała czasowa przejściowa	T_{d0}	s	10 1
dla otwartego obwodu d	- 40		,.
Stała czasowa	<i></i>		0.05
podprzejsciowa dla	T_{d0}	s	0,05
otwartego obwodu d			
Stała czasowa przejsciowa	T_{q0}	s	1,0
Ctolo oznaciwa	2.		
Stata czasowa	Τ″	â	0.00
poupizejsciowa dia	<i>I</i> _{q0}	S	0,08
Mochaniczna stała czasowa			
turbogeneratora	H_G	S	0,726
Mechaniczna stała czasowa			
turbiny	H_T	S	5,635

Dane wejściowe do modelowania układu mechanicznego turbozespołu podano w tabeli 5.

Przyjęto na podstawie literatury przytoczonej szczegółowo w [12] współczynniki tłumienia mas wirujących oraz stałych sprężystości wału.

Tabela 5. Dane wejściowe do modelowania układu mechanicznego turbozespołu 1308 MVA

Ozna- czenie	Jednostka	Nazwa	Wartość
T_I		Udział momentu (lub	0,3
T_2	j.w.	mocy) napędzającego w	0,22
T_3		(lub mocy)	0,24
T_4		napędzającym turbiny	0,24
J_{I}	kg m ^{2.} 10 ⁶		0,0084
J_2			0,0135
J_3		Moment bezwładności	0,06375
J_4			0,06375
J_5			0,01924

$D_{1 abs}$			500
D_{2_abs}		Manálozy nnik thumiania	500
D _{3 abs}	N m s rad ⁻¹	wg wzoru (6)	500
$D_{4 abs}$		wg wzoru (0)	500
D _{5 abs}			500
$K_{1,2}$	N m s rad ⁻¹ 10 ⁶	Stala aprožvatoćaj walu	80
K _{2,3}		<i>i,i</i> +1 wg wzoru (7)	160
$K_{3,4}$		nie dotyczy ostatniej	260
<i>K</i> _{4,5}			380

Oznaczenia w tabeli 5: (6)

(7)

$$T_i = D_{i abs} \cdot \omega_i$$

$$T_{spr,i} = -T_{spr,i+1} = K_{i,i+1} \cdot (\delta_i - \delta_{i+1})$$

 T_i - moment tłumiący działający na masę *i*, ω_i - prędkość obrotowa masy *i*, $T_{spr,i}$ - moment skrętny wału, δ_i - położenie kątowe masy *i*.

Numeracja mas liczona od strony turbiny *WP* w kierunku turbogeneratora.

Na rysunku 3 przedstawiono na podstawie danych z literatury zależności współczynników sztywności odcinków wałów turbozespołów w funkcji ich mocy [12].

Rys.3. Zależność współczynników sztywności odcinków wałów turbozespołów w funkcji ich mocy

Rys.4. Kształt poszczególnych modów (wartości składowych wektorów własnych macierzy transformacji Q).

Podstawowe parametry transformatora blokowego są następujące:

- Moc pozorna: 1350 MVA (3 jednostki 1-fazowe),

- Przekładnia napięciowa: 27/425 kV/kV,

- Procentowe napięcie zwarcia: $\Delta U_{Z\%}$ = 15,5 %,

- Straty obciążeniowe: ΔP_{Cu} = 2580 kW

- Straty jałowe: ΔP_{Fe} = 420 kW
- Pojemności między uzwojeniami GN-DN: C_T = 2,6 nF/f
- Pojemność doziemna uzwojenia GN: C_{TI}= 2,9 nF/f
- Pojemność doziemna uzwojenia DN: C_{T2}=12,63 nF/f

Moc zwarciowa na szynach 400 kV wynosi: $S_{k \max}$ = 22,9 GVA (R/X = 0,059), $S_{k \min}$ = 1,7 GVA (R/X = 0,100).

Linia blokowa 400 kV ma następujące parametry:

- Napięcie znamionowe: 400 kV
- Długość: l = 0,725 km
- Typ przewodu: 408-AL1F/34-UHST
- Reaktancja jednostkowa: X = 0,285 Ω/km
- Reaktancja dla składowej zerowej (jednostkowa): X_{0} = 1,36 Ω/km
- Rezystancja jednostkowa: $R = 0,0292 \Omega/km$
- Rezystancja dla składowej zerowej (jednostkowa): $R_{ll} = 0,177 \Omega/\text{km}$

Analiza modalna

Celem analizy modalnej jest obliczenie częstotliwości drgań własnych elementów turbozespołu i zbadanie wrażliwości układu na wymuszenia zewnętrzne o częstotliwościach rezonansowych.

Na rysunku 4 przedstawiono kształt poszczególnych modów (znormalizowane wartości składowych wektorów własnych macierzy transformacji *Q*) [12]. Kształt modów obrazuje wzajemne przemieszczenie poszczególnych mas wirujących w przypadku wystąpienia rezonansu przy danej częstotliwości modalnej.

Na rysunku 5 przedstawiono zależność maksymalnych momentów skrętnych T_i (odniesionych do momentów znamionowych wałów) w poszczególnych odcinkach wałów w funkcji częstotliwości sinusoidalnego wymuszenia zewnętrznego od strony sieci, o amplitudzie 1% momentu znamionowego T_{n_gen} . działającego na wirnik turbogeneratora.

Rys.5. Zależność maksymalnych momentów skrętnych w poszczególnych odcinkach wałów w funkcji częstotliwości sinusoidalnego wymuszenia zewnętrznego o amplitudzie 1% $T_{n_{gen}}$ przyłożonego do wirnika generatora.

Należy zauważyć, że nawet przy tak małym pobudzeniu wirnika momentem zakłócającym, przy pewnych częstotliwościach rezonansowych momenty skrętne przekraczają wartości znamionowe dla tych wałów. Obliczenia momentów skrętnych na wale turbozespołu podczas zakłóceń

Rys.6. Układ do obliczenia momentów skrętnych na wale turbozespołu podczas wybranych zakłóceń

Wykonano obliczenia momentów mechanicznych skrętnych wału podczas wybranych zakłóceń takich jak zwarcie 3-fazowe i 2-fazowe w pobliżu zacisków generatora, zwarcie 3-fazowe, 2-fazowe i 1-fazowe za transformatorem blokowym, podczas zadziałania zaworu odcinającego oraz podczas synchronizacji przy niezgodności faz. Badany układ pokazano na rysunku 6.

Zwarcia w sieci elektroenergetycznej i zrzut obciążenia

Wyniki obliczeń momentów skrętnych wałów podczas zwarć i zrzutu obciążenia przedstawia tabela 6. Tabela zawiera maksymalne wartości momentów wyrażone w jednostkach względnych tj. odniesione do momentu znamionowego danego odcinka wału T_{n_i} określonego następująco:

$$T_{n_i} = \frac{P_{n_i}}{\omega_n}$$

(8)

gdzie: P_{n_i} - oznacza moc przenoszoną danym odcinkiem wału w warunkach obciążenia znamionowego a wynikającą z udziału momentu (lub mocy) w całkowitym momencie (lub mocy) napędzającym części turbiny i podanym w tabeli 5.

Kolejne punkty tabeli 6 dotyczą następujących stanów: $Z1 \div Z2$ - 3-fazowe i 2-fazowe zwarcie w pobliżu zacisków generatora. W chwili *t*=0,1 następuje zwarcie, w chwili *t*=0,2 s następuje otwarcie wyłącznika generatorowego i zadziałanie zaworu odcinającego dopływ pary.

 $Z3 \div Z5$ - 3-fazowe, 2-fazowe i 1 fazowe zwarcie na napięciu 400 kV w pobliżu transformatora blokowego na początku linii blokowej. W chwili *t*=0,1 s następuje zwarcie, w chwili *t*=0,2 s następuje otwarcie wyłącznika generatorowego i zadziałanie zaworu odcinającego dopływ pary.

Z6÷Z7 - 3-fazowe i 1 fazowe zwarcie na napięciu 400 kV w głębi sieci (20 km od generatora). W chwili *t*=0,1 s następuje zwarcie, w chwili *t*=0,2 s następuje otwarcie wyłącznika w linii 400 kV i odcięcie zwarcia.

Z8 - Praca ustalona generatora i w chwili t=0,1 s następuje otwarcie wyłącznika sieciowego i zadziałanie zaworu odcinającego dopływ pary (zrzut mocy).

Obliczenia wykonano dla wstępnych obciążeń generatora: 100%, 80%, 40% i 0%.

Wyniki obliczeń w formie graficznej przedstawiono na rysunkach opisanych w tabeli 6.

Na rysunku 7 przedstawiono przebiegi prądów fazowych turbogeneratora podczas zwarcia 3-fazowego w linii blokowej 400 kV za transformatorem blokowym – zakłócenie *Z3*.

Fabela 6. N	Maksy	malne	wartośc	i mome	ntów	skręt	nycł	odcinkóv	v wału	podczas	zakłóce	ńw	oracy	/ turbog	genera	atora
-------------	-------	-------	---------	--------	------	-------	------	----------	--------	---------	---------	----	-------	----------	--------	-------

vianoyii	ane warteser memeritew skrętnych edenite	w wala pour		w pruby turbe	generatora			
			Obciążenie generatora					
In	Onio zakłógonia	Wielkoćć	100%	80%	40%	0%		
∟р	Opis zakiocenia	WIEIKOSC	Wartość	Wartość	Wartość	Wartość		
			maks.[j.w.]	maks.[j.w.]	generatora 40% Wartość maks.[j.w.] 4,82 3,26 2,41 2,5 2,78 1,40 1,21 1,27 2,89 1,62 1,5 1,61 1,56 1,07 1,01 1,09 1,28 1,18 0,77 0,82 2,49 2,46 2,19 2,18 1,07 1,1 0,48 0,67 0,47	maks.[j.w.]		
		<i>T4</i>	4,94	4,62	4,82	4,86		
71	Zwarcie 3-fazowe na szynach 27 kV za	T3	3,31	2,72	3,26	2,77		
21	wyłącznikiem Q1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2,1					
		<i>T1</i>	3,13	Obciążenie generatora 80% 40% Wartość Wartość maks.[j.w.] maks.[j.w.] 4,62 4,82 2,72 3,26 1,7 2,41 1,77 2,5 2,9 2,78 1,71 1,40 1,23 1,21 1,27 1,27 3,02 2,89 2,07 1,62 1,98 1,5 2,18 1,61 1,79 1,56 1,29 1,07 1,5 1,01 1,62 1,09 1,63 1,28 1,58 1,18 1,22 0,77 1,3 0,82 2,57 2,49 2,5 2,46 2,19 2,19 2,19 2,18 1,36 1,08 1,37 1,09 1,34 1,07 1,37 1,1 0,	2,5	2,46		
		T4	3,51	2,9	2,78	2,25		
72	Zwarcie 2-fazowe na szynach 27 kV za	T3	1,9	1,71	1,40	1,12		
L2	wyłącznikiem Q1	T2	Obciążenie generatorIkość100%80%40%WartośćWartośćWartośćWartość $T4$ 4,944,624,82 $T3$ 3,312,723,26 $T2$ 2,891,72,41 $T1$ 3,131,772,5 $T4$ 3,512,92,78 $T3$ 1,91,711,40 $T2$ 1,911,231,21 $T1$ 2,061,271,27 $T4$ 3,13,022,89 $T3$ 2,132,071,62 $T2$ 2,221,981,5 $T4$ 3,13,022,89 $T3$ 2,132,071,62 $T2$ 2,221,981,5 $T1$ 2,452,181,61 $T4$ 1,91,791,56 $T3$ 1,431,291,07 $T2$ 1,781,631,28 $T3$ 1,761,581,18 $T2$ 1,431,220,77 $T1$ 1,511,30,82 $T4$ 2,62,572,49 $T3$ 2,512,52,46 $T2$ 2,192,192,19 $T1$ 2,22,192,18 $T4$ 1,481,361,08 $T3$ 1,451,210,67 $T1$ 1,050,870,47 $T1$ 1,070,890,53	1,21	0,96			
		<i>T1</i>	2,06	1,27	1,27	0,97		
		T4	3,1	Obciążenie generato 80% 40% Wartość Wartoś maks.[j.w.] maks.[j. 4,62 4,82 2,72 3,26 1,7 2,41 1,77 2,5 2,9 2,78 1,71 1,40 1,23 1,21 1,27 1,27 3,02 2,89 2,07 1,62 1,98 1,5 2,18 1,61 1,79 1,56 1,29 1,07 1,5 1,01 1,62 1,09 1,58 1,18 1,22 0,77 1,3 0,82 2,57 2,49 2,57 2,49 2,57 2,46 2,19 2,19 2,19 2,18 1,36 1,08 1,37 1,07 1,36 1,08 1,37 1,1 0,89 <td>2,89</td> <td>2,74</td>	2,89	2,74		
73	Zwarcie 3-fazowe w linii blokowej 400 kV	<i>T3</i>	2,13	2,07	1,62	1,57		
LJ	za transformatorem blokowym	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,5	0,79				
		<i>T1</i>	2,45	2,18	1,61	0,84		
		T4	1,9	1,79	1,56	1,34		
74	Zwarcie 2-fazowe w linii blokowej 400 kV	T3	1,43	1,29	1,07	0,78		
Z4	za transformatorem blokowym	T2	1,73	Obciążenie generatora 80% 40% Wartość Wartość maks.[j.w.] maks.[j.w.] 4,62 4,82 2,72 3,26 1,7 2,41 1,77 2,5 2,9 2,78 1,71 1,40 1,23 1,21 1,27 1,27 3,02 2,89 2,07 1,62 1,98 1,5 2,18 1,61 1,79 1,56 1,29 1,07 1,5 1,01 1,62 1,09 1,63 1,28 1,58 1,18 1,22 0,77 1,3 0,82 2,57 2,49 2,57 2,49 2,57 2,49 2,19 2,19 2,19 2,19 2,19 2,19 2,19 2,19 1,34 1,07	0,69			
		TI	1,87	1,62	zenie generatora 40% 40% 40% 40% sść Wartość maks.[j.w.] 2 3,26 2,41 7 2,5 2,41 7 2,5 2,78 1,40 3 1,21 7 2,89 7 1,62 3 3 1,56 1,56 1,07 1,01 2 1,02 1,03 1,28 3 1,101 2 0,82 7 2,46 2 2,18 3 3 1,07 1,07 2,18 3 3 1,07 1,1	0,71		
		<i>T4</i>	1,78	1,63	1,28	0,92		
75	Zwarcie 1-fazowe w linii blokowej 400 kV za transformatorem blokowym	<i>T3</i>	1,76	1,58	1,18	0,47		
LJ		T2	1,43	1,22	0,77	0,41		
		<i>T1</i>	1,51	1,3	0,82	0,41		
		<i>T4</i>	2,6	2,57	2,49	2,4		
76	Zwarcie 3-fazowe w głębi sieci (20 km od	T3	2,51	2,5	2,46	3,25		
20	elektrowni) za wyłącznikiem Q3	T2	2,19	Obciążenie generatora 80% 40% Wartość Wartość maks.[j.w.] maks.[j.w.] 4,62 4,82 2,72 3,26 1,7 2,41 1,77 2,5 2,9 2,78 1,71 1,40 1,23 1,21 1,27 1,27 3,02 2,89 2,07 1,62 1,98 1,5 2,18 1,61 1,79 1,56 1,29 1,07 1,5 1,01 1,62 1,09 1,63 1,28 1,58 1,18 1,22 0,77 1,3 0,82 2,57 2,49 2,57 2,46 2,19 2,18 1,36 1,08 1,37 1,09 1,34 1,07 1,37 1,1 0,89 0,48 1	2,15			
		TI	2,2	2,19	2,18	2,14		
		Τ4	1,48	1,36	1,08	0,79		
77	Zwarcie 1-fazowe w głębi sieci (20 km od	<i>T3</i>	1,48	1,37	1,09	1,13		
2/	elektrowni) za wyłącznikiem Q3	Obciążenie generatora Wielkość 100% 80% 40% Wartość Wartość Wartość maks.[j.w.] maks.[j.w.] za $T4$ 4,94 4,62 4,82 za $T2$ 2,89 1,7 2,41 $T1$ 3,13 1,77 2,5 $T4$ 3,51 2,9 2,78 za $T3$ 1,9 1,71 1,40 $T2$ 1,91 1,23 1,21 $T1$ 2,06 1,27 1,27 za $T4$ 3,1 3,02 2,89 0 kV $T3$ 2,13 2,07 1,62 $T1$ 2,45 2,18 1,61 $T4$ 1,9 1,79 1,56 0 kV $T3$ 1,43 1,29 1,07 $T2$ 1,73 1,5 1,01 $T1$ 2,45 2,18 1,61 0 kV $T3$ 1,43 1,22	1,07	0,79				
		<i>T1</i>	1,49	1,37	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,83		
		T4	1,08	0,89	0,48	0,15		
78	Praca ustalona zrzut obciażonie	<i>T3</i>	1,45	1,21	0,67	0,26		
20	Fraca usidioria - zrzul obciązenia	T2	1,05	0,87	0,47	0,28		
Z4 Z5 Z6 Z7 Z8		TI	1,07	0,89	0,53	0,29		
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		

Oznaczenia w tabeli: I_{A,B,C} - prądy fazowe generatora, T₁₊₄ - momenty skrętne na *i*-tym odcinku wału (licząc od strony turbiny WP).

Na rysunku 8 przedstawiono przebiegi momentów skrętnych na odcinkach wałów turbozespołu podczas zwarcia 3-fazowego w linii blokowej 400 kV za transformatorem blokowym – zakłócenia *Z3*.

Rys.7. Przebiegi prądów fazowych generatora podczas zwarcia 3fazowego w linii blokowej 400 kV za transformatorem blokowym zakłócenie *Z3*

Rys.8. Przebiegi momentów skrętnych na turbozespołu podczas zwarcia 3-fazowego w linii blokowej 400 kV za transformatorem blokowym - zakłócenie *Z3*

Rys.9. Przebiegi prądów fazowych turbogeneratora podczas zrzutu obciążenia (zamknięcie zaworu odcinającego) - zakłócenie Z8

Na rysunku 9 przedstawiono przebiegi prądów fazowych turbogeneratora podczas zrzutu obciążenia (zamknięcie zaworu odcinającego) zakłócenie *Z*8.

Rys.10. Przebiegi momentów skrętnych na odcinkach wałów turbozespołu podczas zrzutu obciążenia turbogeneratora (zamknięcie zaworu odcinającego) - zakłócenie *Z8*

Na rysunku 10 przedstawiono przebiegi momentów skrętnych na odcinkach wałów turbozespołu podczas zrzutu obciążenia turbogeneratora (zamknięcie zaworu odcinającego) – zakłócenie *Z*8.

Na rysunku 11 przedstawiono wartości maksymalnych momentów skrętnych w odcinkach wału turbozespołu podczas zakłóceń opisanych w tabeli 6.

Synchronizacja turbogeneratora

Wykonano obliczenia przebiegu momentów skrętnych w odcinkach wałów turbozespołu podczas wykonywania synchronizacji wyłącznikiem generatorowym. Obliczenia wykonywano dla różnicy częstotliwości turbogeneratora i sieci $\Delta f = 0,1$ Hz oraz dla różnicy kątów fazowych napięć $\Delta \varphi$ w przedziale 0° ÷ 180°. Na rysunku 12 pokazano przebiegi prądów turbogeneratora a na rysunku 13 przebiegi momentów skrętnych w odcinkach wałów podczas synchronizacji przy niezgodności faz $\Delta \varphi = 10^\circ$.

Rys. 12. Przebiegi prądów fazowych turbogeneratora podczas synchronizacji przy niezgodności faz $\Delta \varphi = 10^{\circ}$

Rys.13. Przebiegi momentów skrętnych podczas synchronizacji przy niezgodności faz $\varDelta \varphi$ = 10°

Zależność wielkości maksymalnych momentów skrętnych podczas synchronizacji od różnicy kątów fazowych $\Delta \varphi$ pokazano na rysunku 14.

Rys.14. Zależność wielkości maksymalnych momentów skrętnych w odcinkach wałów 1 \div 5 układu wirującego podczas synchronizacji, od różnicy kątów fazowych $\varDelta \varphi$

Wnioski

Wykonano obliczenia przebiegów skrętnych momentów mechanicznych na wale turbozespołu 1308 MVA podczas wybranych zakłóceń takich jak zwarcie 3-fazowe i 2-fazowe w pobliżu zacisków generatora, zwarcie 3-fazowe, 2-fazowe i 1-fazowe za transformatorem blokowym dla różnych obciążeń turbogeneratora, podczas zrzutu obciążenia (działanie zaworu odcinającego) oraz podczas synchronizacji przy niezgodności faz.

Wartości momentu skrętnego na wale turbozespołu przy zwarciu na zaciskach osiągają 4,94 j.w. dla zwarcia 3-fazowego i 3,51 j.w. dla zwarcia 2-fazowego.

Wartości momentu skrętnego na wale turbogeneratora przy zwarciu w linii blokowej osiągają wartość 3,1 jw. dla zwarcia 3-fazowego.

Wartości momentu skrętnego na wale turbogeneratora przy zwarciu w sieci 400 kV dla zwarcia 3-fazowego, w odległości 20 km od stacji 400 kV osiągają wartość 2,6 j.w.

Wartości momentu skrętnego na wale turboturbogeneratora przy zwarciach zależą od wstępnego obciążenia turboturbogeneratora i są mniejsze dla mniej obciążonego.

Wartość momentu skrętnego na wale turboturbogeneratora przy synchronizacji zależy od kąta przesuniecia fazowego i dla kąta 110° wynosi 5,25 j.w.

LITERATURA

- Bölderl i inni: Die Torsionsmomente i Turbinen und Generatorvellen bei Kurzchlüssen, Fehlsynchronisierung und Kurzschluss – abschaltung. ETZ-A Bd. 96 1975, s. 164-171.
- [2] Joyce J.S. i inni: Torsional fatigue of turbine-generator shafts caused by defferent electrical system faults and switching operations. *IEEE Transactions on PAS* Vol PAS-97, No 5 Sept./Oct. 1978 p. 1965-1976.
- [3] Rusche P.A.E.: Network alternatives to reduce turbinegenerator shaft – stresses. *IEEE Transactions on PAS* Vol PAS-98 No 2, 1979 p. 408-415.
- [4] Данилевич Я. Б., Карымов А. А.: Оценка сокращения «срока жизни» вала ротора турбогенератора. Электричество Номер 2, 1997г с36-40
- [5] Грабовский В. П.: Анализ повреждаемости валопроводов турбогенераторов, работающих в электоэнергетической системе. Электричество Номер 1, 2010г с39-42.
- [6] Przybysz J.: Turbogeneratory, eksploatacja I diagnostyka. WNT, Warszawa, 1991 r., str. 182.
- [7] Przybysz J.: Identyfikacja sił elektromagnetycznych działających na wirnik oraz nietypowych rodzajów pracy i uszkodzeń turbozespołu. Projekt badawczy K015/T10/2001. Instytut Energetyki, Warszawa 2001 r.
- [8] Przybysz. J.: Wykonanie obliczeń momentów skrętnych na wałach turbozespołu 200 MW występujących podczas rozmaitych zakłóceń elektrycznych. Instytut Energetyki, E/01/STAT/2004.
- [9] Przybysz J.; Wiśniewski J.: Momenty skrętne działające na wał turbozespołu podczas zakłóceń elektrycznych oraz ich monitorowania. Energoserwis Lubliniec, XIII Konferencja Energetyki "Energetyka – modernizacja i rozwój", Kliczków 10-12 września 2003 r., str. 236-247.
- [10] Przybysz J: Siły i momenty działające na wał turbozespołu podczas zakłóceń elektrycznych. Instytut Energetyki, E/01/STAT/2003.
- [11]EMTP Rule Book and Theory Book. Bonneville Power Administration, 1987.
- [12] Przybysz J.; Wiśniewski J.: Analiza momentów skrętnych na wale turbozespołu 1308 MVA. Instytut Energetyki, E/01/STAT/2015.

Autorzy: prof. dr hab. inż. Jerzy Przybysz, e-mail: <u>jerzy.przybysz@ien.com.pl</u>; Instytut Energetyki Instytut Badawczy, ul. Mory 8, 01-330 Warszawa; dr inż. Józef Wiśniewski, e-mail: <u>jozef.wisniewski@p.lodz.pl</u>, Politechnika Łódzka Instytut Elektroenergetyki, ul. Stefanowskiego 18/22, 90-924 Łódź mgr inż. Marcin Biernacki, e-mail: <u>marcin.biernacki@ien.com.pl</u>, Instytut Energetyki Instytut Badawczy, ul. Mory 8, 01-330 Warszawa.