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Streszczenie.W artykule jest przeanalizowane pochodzenie małych parametrów w syngularnie zaburzonych równaniach różniczkowych opisujących 
stany układu elektronicznego. Udowodniono, że pochodzenie omówionych parametrów może być dwóch rodzajów - albo wskutek obecności 
składników układu o małych wartościach, albo wskutek pewnych relacji liczbowych między wartościami tych składników. Proponowane jest 
podejście do budowy i analizy strukturalnej modeli matematycznych z zaburzeniami syngularnymi na podstawie budowy tzw. szablonów wzorów. 
Analiza pochodzenia małych parametrów w syngularnie zaburzonych równaniach różniczkowych opisujących stany układu 
elektronicznego 
  
Abstract. The paper deals with the origin of small parameters in the singularly perturbed state models of electronic circuits. As is shown in the 
paper, there are at least two origins of small parameters - small values of circuit components and certain relationships between the values of circuit 
components which need not be small in magnitude. The approach is proposed to building and structural analysis of singularly perturbed 
mathematical models based on the formula templates, as they are called.  
 
Słowa kluczowe:układy elektroniczne, symulacja, modele matematyczne, zaburzenia syngularne, szablony strukturalne. 
Keywords:electronic circuits, simulation, mathematical models, singular perturbations, structural templates.  
 
 
Introduction 

Qualitative analysis of dynamical systems without 
finding the solutions themselves have a profound impact in 
revealing fundamental relations between the particular 
behavior of the mentioned systems and specific properties 
of mathematical models. As to electronic circuits, qualitative 
research makes it possible to investigate the dependence of 
the behavior of solutions on parameters of the circuit, what 
is of great importance in some cases, for example, when 
parameter variations may cause essential unwanted 
changes in the circuit behavior. The mentioned phenomena 
can be observed, say, in electronic circuits whose behavior 
is described by the set of singularly perturbed differential 
state equations.  
     This paper deals with the structural analysis of singularly 
perturbed state models of linear electronic circuits with 
lumped parameters. The basis for the analysis is the set of 
formula templates, as they are called, allowing us to 
establish direct relations between the structural properties 
of the circuit and matrix coefficients of the state model used 
in the analysis.   
 
Structural properties of state equations of circuits with 
lumped parameters  
     The state equations of an electronic circuit with lumped 
parameters can be presented in the form of differential and 
algebraic equations as follows [1]:  
 

ௗ௫ܯ(1)

ௗ௧
ൌ ݔܣ ൅ ݒܤ ൅ ᇱܤ ௗ௩

ௗ௧
;	

a) ݕ ൌ ݔܥ ൅  																										,ݒܦ
where ݔ ∈  ௡ is the n-dimensional real vector of stateࡾ

variables, ݒ ∈  ௠ is the m-dimensional real vector ofࡾ

input signals of independent voltage (E-components) and 

current (J-components) sources, ݕ ∈ ௞ࡾ  is the k-
dimensional vector of voltages and currents at the circuit 

outputs, t is time, and M, B', A, B, C, and D are matrix 
coefficients. As is known [2], equations (1,a) are called the 
singularly perturbed differential equations if the determinant 

of matrix M tends to zero: detM→0. Mathematical 
aspects of the analysis of singularly perturbed state 
differential equations have been investigated in detail [2, 3]. 
The paper deals with the analysis of circuit structural 

properties causing the availability of singularities in (1). The 
idea of templates discussed in the paper is readily apparent 
from the fact that the structure of matrix coefficients in (1) 
points to specific features of the structure of the circuit 
analyzed. With this in mind let us recall the steps of 
formation of state equations in form (1).The formation of (1) 
includes the following steps [1]: 

   1. The development of the structural graph Γ of the 
circuit. 
   2. The formation of the graph tree allowing the division of 
graph edges between two sets - the set of tree branches 

Τand set of chords Ν. 
   3. The formation of topological equations corresponding 
to Kirchhoff’s laws for currents and voltages: 

            a) Π·I  = 0, 
(2)        b) Ρ·V =0,                               
where I is the vector of edge currents and V  is the vector 

of voltages across edges, Π is the matrix of independent 

cutsets, and Ρ is the matrix of independent loops in the Γ 

graph. The rows of the Π matrix correspond to the tree 
branches and the columns correspond to tree branches and 

chords, respectively. And the rows of the Ρ matrix 
correspond to the chords and the columns correspond to 
the chords and tree branches, respectively. 
     Assume that each independent cutset includes no more 
than one tree branch, and each independent loop includes 
no more than one chord. The above cutsets and loops are 
called the principal cutsets and loops, or the principal 
system of coordinates.   

     We can represent vectors I and V in the form of two 
subvectors: the subvector of currents (voltages) of tree 

branches and chords: ܫ ൌ ሺ்ܫ, ேሻ்ܫ , ܸ ൌ ሺ்ܸ , ேܸሻ், 
where subscripts T and N denote tree branches and chords, 

respectively, and superscript T denotes vector 
transposition. If the principal system of coordinates is 

chosen, matrix Π in (2a) is split in two submatrices – the 

identity submatrix of principal cutsets for tree branches ET 

and the submatrix of principal cutsets for chords ߨே:       
Π =ൣ,்ܧ			ߨே൧. And dually, matrix Ρ in (2b) can be 
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represented in the form of two submatrices – the submatrix 

of principal loops for tree branches ்ߩ and the identity 

submatrix of principal loops for chords EN : ߏ ൌ
ሾ்ߩ, Eேሿ. Taking into account the above comments, we 
can rewrite (2) in the form:  

        a) ሾE், ேሿߨ ∙ ൤
I்
I்
൨	=	0, 

(3)  b)ሾ்ߩ, Eேሿ ∙ ൤
V்
Vே
൨	=	0.															 

     It is easy to verify that the following relationships are 

valid: ߨே ൌ െ்ߩ
்ߩ  ,் ൌ െߨே

் , where subscripts T and 

N denote tree branches and chords, respectively, and 

superscript T denotes matrix transposition. In our following 

discussion, we use matrix ߨே, but it is evident that any 

relationship expressed in terms of the ߨே matrix can be 

rewrite in terms of the ்ߩ matrix.  
     4. The formation of component equations, which express 
relationships between currents and voltages in each circuit 
component. For the sake of simplicity, we restrict our 
consideration to the current-voltage relationships only, but it 
is possible to extend our classification to other kinds of 
circuit variables, for example, such as charge-current and 
so on. 
     Taking into account the fact that any multi-port circuit 

component is represented in graph Γby certain subgraph 
consisting of two-terminal edges, we can reduce our 
consideration to circuits containing two-terminal circuit 
components. Each two-terminal circuit component can be 

assigned to one of two classes: y– or z–components.  If the 
current (voltage) variable is subject to other circuit variables 
in the component equation, then this component is 

assigned to the class of y–components (z-components). 
According to this classification, the voltage controlled 
current source (VCCS) as well as the current controlled 
current source (CCCS) should be assigned to the class of 

y–components, because their component equations 
express current as a function of another circuit variable, 

namely: ܫ௢௨௧ ൌ ݏ ௜ܸ௡ and ܫ௢௨௧ ൌ  ,௜௡, respectivelyܫ݊

where ௜ܸ௡ and ܫ௜௡ are controlling voltages and currents of 
any circuit component considered as input variables for 

those controlled sources, ܫ௢௨௧ is the current through the 
given controlled source considered as the output variable, 

and  s and n are controlling parameters. By the same 
token, the voltage controlled voltage source (VCVS) as well 
as the current controlled voltage source (CCVS) are 

considered as z-components, because component 
equations express voltage across those sources as a 
function of other circuit variables (voltage and current, 

respectively): ௢ܸ௨௧ ൌ ݉ ௜ܸ௡ and ௢ܸ௨௧ ൌ  ௜௡, where mܫݎ
and r are controlling parameters. The independent current 

source J and the independent voltage source E are 

classified as the y- and z-components, respectively. The 

short-circuited component, whose resistance is zero R = 
0, is the z-component, because its component equation is 

given by the equation  VR = 0, and the circuitry with zero 

conductance G	 =	 0	 is the y-component, because its 

component equation is given by the equation IG=0. The 

resistor with non-zero resistance R≠0 can be assigned 

either to y– or z-component, and is called a dual 
component. Formally, capacitances and inductances might 
by classified as dual components, too, because their 
component equations can be represented either as currents 
as functions of voltages or voltages as functions of currents. 
But in order to represent the state model in the form of 
differential and algebraic equations (1), capacitances and 

inductances should be assigned to the classes of  y–  and 

z–components, respectively, because under  this 
assumption, we use component equations in the differential 

forms: ܫ஼ ൌ
ௗ௏಴
ௗ௧

 and  ௅ܸ ൌ
ௗூಽ
ௗ௧

. 

     Thus the representation of the state model in the form of 
the set of differential and algebraic equations (1) can be 
provided by the inclusion of all the voltage sources and 
maximum possible number of capacitances into the set of 

tree branches Τ, and by the inclusion of all the current 
sources and maximum possible number of inductances to 

the set of chords Ν. The tree built using this rule is called 

the normal tree of the structural graph Γ. 

     If graph Γ contains a loop consisting of capacitances 
and maybe voltage sources, then one of the capacitances 

should be assigned to the set of chords, and if graph Γ 
contains a cutset consisting of inductances and maybe 
current sources, then one of the inductances should be 
assigned to the set of tree branches. The mentioned loops 
and cutsets are called the degenerate loops and cutsets, 
respectively. As is known [1], the availability of degenerated 
loops and cutsets does not bring into change in the general 
structure of model (1), since any capacitance voltage in the 
degenerate loop can be expressed as a sum of voltages of 
the rest components of the loop. In a similar fashion, any 
inductance current in the degenerate cutset can be 
expressed as a linear sum of currents of the rest 
components of the cutset.  
     5. The substitution of component equations into the set 
of topological equations (3) yields the state equations in the 

form (1), in which the state variable vector x consists 
generally of the subvector of voltages of the capacitance 

branches included into the normal tree VCT and the 

subvector of currents of the inductive chords ILN:  x	 =	
ሺ ஼்ܸ, 	.௅ேሻ்ܫ Vector v in (1) consists generally of the 

subvector of voltages of independent voltage sources VE 

and currents of independent current sources IJ, that is, 

v=൫ ாܸ, ௃൯ܫ
்

,where the superscript T is the transposition 
symbol.  
     Following the above steps, we can form some templates 

for filling in matrix M  in (1) with nonzero elements and use 
these templates to analyze structural properties of circuits, 
whose behavior is described by a singularly perturbed state 
equations. 
 

Using templates for filling in matrix M with nonzero 
elements in the analysis of singularly perturbed state 
equations 
     Let us denote rows and columns of matrix coefficients by 
the same symbols as the corresponding circuit elements. 

For example, ߨ௅௦,௅௜ is the element of the ߨே matrix 

located in the row denoted by symbol Ls and in the column 

denoted by symbol Li. If ߨ௅௦,௅௜≠0, then graph Γ contains 
a degenerate cutset, which includes the inductive tree 

branch Ls  and the inductive chord Li. This situation takes 
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place when the Li  chord is incident to the principal loop, 

defined by the Ls  tree branch. Other notations presented 
below can be interpreted in a similar way. 
     We list below some typical templates for filling in matrix 

M in (1) with nonzero elements, which were derived using 
the sequence of steps described in the previous Section.      
The notation used in our relationships makes it possible to 
interpret circuit structural properties with reasonable facility. 
For example, the expression presented as template 4 is of 
the form 

௅௝,௅௜ܯ	=௅௜,௅௝ܯ ൌ ௅௦,௅௜ߨ	 ∙ ௅௦,௅௝ߨ ∙  .௦ܮ
It means that the value of the Ls inductance is written in 

row Li  and column  Lj  of matrix M (and symmetrically, in 

row Lj  and column Li) with the sign defined by the product 

of the two unity elements of submatrix ߨே, namely, ߨ௅௦,௅௜ 
and ߨ௅௦,௅௝ .    

     Examples of templates for filling in matrix M with 
nonzero elements: 

1. Structural conditions: The capacitive edge ܥ௜  
belongs to the normal tree ܥ௜ ∈ ܶ. 
Template: ܯ஼௜,஼௜ ൌ  .௜ܥ

2. Structural conditions: The inductive edge Lj		belongs 

to the set of chords ܮ௝ ∈ ܰ. 
Template:ܯ௅௝,௅௝ ൌ  .௝ܮ

3. Structural conditions: The inductivities ܮ௝ ∈ ܰ and 

௦ܮ ∈ ܰ are related by mutual inductance Ljs. 
Template:ܯ௅௝,௅௦= ܯ௅௦,௅௝= െܮ௝௦. 

4. Structural conditions: The inductive tree branch 

௦ܮ ∈ ܶis incident to the degenerate cutset that 

includes also inductive chords  ܮ௜, ௝ܮ ∈ ܰ. 
Template: 

௅௝,௅௜ܯ =௅௜,௅௝ܯ ൌ ௅௦,௅௜ߨ	 ∙ ௅௦,௅௝ߨ ∙  .௦ܮ
5. Structural conditions: The capacitive chord ܥ௧ ∈ ܰ 

is incident to the degenerate loop that includes also 

capacitive tree branches ܥ௝, ௦ܥ ∈ ܶ.	
Template: ܯ஼௝,஼௦= ܯ஼௦,஼௝= ߨ஼௝,஼௧ ൉  .௧ܥ·஼௦,஼௧ߨ

6. Structural conditions: The degenerate cutset 

includes the VCCS, ܳ௧ ∈ ܰ, the inductive chord 

௝ܮ ∈ ܰ, and the inductive tree branch ܮ௞ ∈ ܶ.	
Templates: 6.1. ௜ܸ௡ ൌ ஼ܸ௜, where ஼ܸ௜ is the 
controlling voltage across the capacitive tree branch 

௜ܥ ∈ ܶ: 
௅௞,௅௝ߨ =௅௝,஼௜ܯ ൉ ݏ·௅௞,ொ௧ߨ ∙  .௞ܮ

6.2. ௜ܸ௡ ൌ ஼ܸ௜, where ஼ܸ௜  is the controlling voltage 

across the capacitive chord ܥ௜ ∈ ܰ, which is 
incident to the degenerate loop containing the 

capacitive tree branch ܥ௧ ∈ ܶ : 
௅௞,௅௝ߨ௅௝,஼௧= െܯ ൉ ௅௞,ொ௧ߨ ∙ ݏ·஼௧,஼௜ߨ ∙ 	.௞ܮ

7. Structural conditions: The degenerate cutset 

includes the CCCS, ܳ௧ ∈ ܰ, the inductive tree 

branch ܮ௞ ∈ ܶ, and the inductive chord ܮ௝ ∈ ܰ. 	

Templates:	 ௜௡ܫ.7.1 ൌ  ௅௜ is theܫ ௅௜, whereܫ
controlling current through the inductive chord, 

௜ܮ ∈ ௅௞,௅௝ߨ =௅௝,௅௜ܯ  :ܰ ൉ ݊·௅௞,ொ௧ߨ ∙  .௞ܮ
௜௡ܫ .7.2 ൌ  ௅௜ is the controlling currentܫ ௅௜, whereܫ

through the inductive tree branch ܮ௜ ∈ ܶ, which is 
incident to the degenerate cutset containing also the 

inductive chord ܮ௧ ∈ ܰ: 
௅௞,௅௝ߨ௅௝,௅௧= െܯ ൉ ௅௞,ொ௧ߨ ∙ ݊·௅௜,௅௧ߨ ∙ 	.௞ܮ

8. Structural conditions: The degenerate loop includes 

the VCVS, ௧ܷ ∈ ܶ, the capacitive tree branch, 

௝ܥ ∈ ܶ, and the capacitive chord ܥ௧ ∈ ܰ.	
Templates:	 8.1. ௜ܸ௡ ൌ ஼ܸ௦, where ஼ܸ௦ is the 
controlling voltage across the capacitive tree branch 

௦ܥ ∈ ஼௝,஼௦ܯ :ܶ ൌ ஼௝,஼௧ߨ ∙ ௎௧,஼௧ߨ ∙ ݉ ∙  .௧ܥ
8.2. ௜ܸ௡ ൌ ஼ܸ௦, where ஼ܸ௦ is the controlling 

voltage across the capacitive chord ܥ௦ ∈ ܰ, which 
is incident to the degenerate loop containing also the 

capacitive tree branch ܥ௜ ∈ ܶ: 
஼௝,஼௜ܯ ൌ െߨ஼௝,஼௧ ∙ ௎௧,஼௧ߨ ∙ ஼௜,஼௦ߨ ∙ ݉ ∙ ௧ܥ .	

9. Structural conditions: The degenerate loop includes 

the CCVS, ௧ܷ ∈ ܶ, the capacitive tree branch 

௝ܥ ∈ ܶ, and the capacitive chordܥ௧ ∈ ܰ.	
Templates: 9.1. ܫ௜௡ ൌ  ௅௦ is theܫ ௅௦, whereܫ
controlling current through the inductive chord, 

௦ܮ ∈ ܰ: 
஼௝,௅௦ܯ ൌ ஼௝,஼௧ߨ ∙ ௎௧,஼௧ߨ ∙ ݎ ∙  .௧ܥ

௜௡ܫ .9.2 ൌ  ௅௜ is the controlling currentܫ ௅௜, whereܫ

through the inductive tree branch, ܮ௜ ∈ ܶ, which is 
incident to the degenerate cutset containing also the 

inductive chord ܮ௦ ∈ ܰ: 
஼௝,௅௦ܯ ൌ െߨ஼௝,஼௧ ∙ ௎௧,஼௧ߨ ∙ ௅௜,௅௦ߨ ∙ ݎ ∙ 	.௧ܥ

Comments: (1) s, r, m, and n are controlling parameters of 
controlled sources;  (2) versions 6, 7, 8, and 9 include two 
possible situations - the controlling edge of the controlled 
source is assigned to the set of branches of the normal tree 

Τ or to the set of chords Ν.  
     Of course, templates given above do not exhaust all the 
possible circuit configurations, but provide insight into the 
main idea of the method proposed. They exemplify the fact 
that the use of templates, which are simple to be 
programmed, may save as a convenient tool for the 
analysis of structural features of singularly perturbed state 
models.       
     It is evident that in the simplest case, when the structural 

graph Γ of an electronic circuit is free of structural 

degenerations, matrix M maybe singular if small values of 
reactive circuit components – capacitances and/or 
inductances – are present in the matrix diagonal elements. 
It is a rather trivial case, which does not require additional 
comments.  
     In more sophisticated cases, namely, when the circuit 

graph contains structural degenerations, matrix M may be 
singular because of certain relationships between the 
values of circuit components, which are not necessarily 
small in magnitudes. The structural properties of the circuit, 
whose state model is singular, can be easily stated using 

templates for filling in the M matrix with nonzero elements 
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given above. This thesis is illustrated in the next simple 
example.  
     Example 1. Let us consider the circuit consisting of the 

independent voltage source E, resistive components  R1  
and R2, capacitances C1, C2, and C3, and the voltage 

controlled voltage source (VCVS) U (Fig.1), whose 

component equation is as follows: VU = mVC1, where VC1  
is the controlling voltage across the C1 capacitance and m 
is the controlling parameter. 

 
 
Fig.1. A simple circuit containing a degenerate loop C1-C2-U 
 
     Figure 2 presents the structural graph of the circuit, in 
which normal tree branches are pictured by bolt edges, 
chords by thin edges, and principal cutset by dotted lines.  
 
 
                                              C3 

 
                         R1                  C2                       L 
 
 
 
                         E                       C1           U           R2           Q 

 
 
 
 
Fig.2. The structural graph Γ of the circuit with the selected 
branches of the normal tree Τ (bolt lines), chords Ν (thin 
lines),principal cutsets (dotted lines), and dot-and-dash chord Q 
 

     The matrix of principal cutsets Π is of the form: 

Π	=	ሾE், 	=		ேሿߨ
																		E						C1											U							C3						R1										C2										L								R2	
							E	
							C1	
	=		U	
						C3	
	
     According to the selected normal tree, the state vector x 
consists of the two voltages across the tree capacitances 

C1  and C3 and  the current through the inductive chord   

L: ݔ ൌ ሺ ஼ܸଵ, ஼ܸଷ, ௅ሻ்ܫ . Thus matrix M in (1) consists of 

three rows and columns, which we denote by symbols C1, 

C3, and L. To form the M matrix, we can use the templates 
given above. Using templates  1 and 2, we write elements 

C1, C3, and L in the principal diagonal.  

     In view of the presence of a nonzero element in row C1  
and column C2 in matrix Π, namely, πC1,C2= 1, we also 
use template 4. And taking into account that in our example 

Cj, Cs ≡C1, and Ct ≡ C2, we write the next element in M: 

MC1,C1 = πC1,C2 · πC1,C2 · C2 = 1·1·C2 = C2. Finally, 
because of the presence of the degenerate loop consisting 

of components U, C1, and C2, and taking into account that 

Vin= VCs = VC1, and Cj = C1 and Ct = C2, we use 

template 8.1 to write the element MC1,C1 in M: MC1,C1 = 
πC1,C2 · πU,C2 ·m·C2 = 1·(–1)·m·C2 = –m·C2. Thus 

matrix M takes the form of the diagonal matrix        

diag[C1 +C2 (1–m), C3, L]. It is easy to verify that 
following the above procedure of the formation of the state 
model, we can obtain equations (1,a) in the form: 
 

(4) ൥
ଵܥ ൅ ଶሺ1ܥ െ݉ሻ 0 0

0 ଷܥ 0
0 0 ܮ

൩
ௗ

ௗ௧
൥

஼ܸଵ

஼ܸଷ
௅ܫ
൩ ൌ

൥
െሺܩଵ ൅ ଶሻܩ ଶܩ െ1

ଶܩ െܩଶ െ1
݉ െ 1 1 0

൩ ൥
஼ܸଵ

஼ܸଷ
௅ܫ
൩ ൅ ൥

ଵܩ
0
0
൩ ாܸ.   

 

     It is evident that the determinant of matrix M 
approaches zero if one or more diagonal elements tend to 
zero. In the simplest case, it is possible, for example, when 

C1, C2→ 0, and/or C3→ 0, or/and L→ 0. In more 

complicated case, detM →0 if m → (C1 + C2) / C2  for 

any nonzero values of capacitances C1  and C2  and 

controlling parameter m.  If we take that m =(C1 + C2)/C2, 
then the first row will consist of zeros. In this case, the first 
equation in (4) becomes an algebraic equation of the form  
 

0 ൌ െሺܩଵ ൅ ଶሻܩ ∙ ஼ܸଵ ൅ ଶܩ ∙ ஼ܸଷ െ ௅ܫ ൅ ଵܩ ∙ ாܸ,  
 
and any state variable may be expressed as a linear 
function of other state variables. For example, we can write  
 

஼ܸଵ=ሺܩଵ ൅ ଶሻିଵܩ ∙ ሺܩଶ ∙ ஼ܸଷ െ ௅ܫ ൅ ଵܩ ∙ ாܸሻ. 
 

     Substituting this into the second and third equations, we 

can exclude variable ஼ܸଵ from equations (4). Therein lies 
the simplest method of the reduction of singularly perturbed 
differential equations which we discuss below in more 
detail. 
     Now, let us change slightly our problem. Assume that 

the VCVS is controlled by the voltage across the C3 

capacitance: VU = mVC3. To write parameter m in matrix 

M, we can use again template 8.1, but now we take into 

account that Cj = C1, Ct = C2, and Cs = C3. 
Consequently, we can form the following template:    
 

஼௝,஼௦ܯ ൌ ஼ଵ,஼ଷܯ	 ൌ ஼௝,஼௧ߨ ∙ ௎௧,஼௧ߨ ∙ ݉ ∙ 		=	௧ܥ
஼ଵ,஼ଶߨ ∙ ௎,஼ଶߨ ∙ ݉ ∙ 	.1·(–1)·m·C2 = –mC2	=	௧ܥ

	
In this case, matrix M  takes the form: 

ܯ       (5) ൌ ൥
ଵܥ ൅ ଶܥ െ݉ܥଶ 0

0 ଷܥ 0
0 0 ܮ

൩     

 

     It is evident that matrix M will not be singular for any 
nonzero positive and reasonable elements.  

1	 	 	 	 1	 	 	
	 1	 	 	 –1	 	1	 –1	 1
	 	 1	 	 –1	 		1
	 	 	 1	 	 		1 –1
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     Of course, they are very simple examples. In more 
sophisticated cases, the singularly perturbed state 
equations may be caused by the presence of certain off-

diagonal elements in matrix M and  linear relationships of 
some rows. To illustrate this statement, let us change our 

example once more including CCCS in parallel to R2, as is 
shown in Fig. 1 by the dash line. Let the component 

equation of the CCCS be as follows:  IQ = nIC2, where IC2 

is the controlling current through the capacitance C2  and n 
is the controlling parameter.       

     The structural graph Γ  is augmented by chord Q, which 
is represented by the dot-and-dash line in Fig.2. Following 
the above technique, we can obtain the templates for filling 

in matrix M: 

஼ଵ,஼ଵܯ ൌ ଵܥ ൅ ஼ଵ,஼ଶߨ ∙ ஼ଵ,஼ଶߨ ∙ ଶܥ ൅ ஼ଵ,ொߨ ∙
஼ଵ,஼ଶߨ																				 ∙ ݊ ∙ 		=	ଶܥ
ൌ ଵܥ ൅ 1 ∙ 1 ∙ ଶܥ ൅ ሺെ1ሻ ∙ 1 ∙ ݊ ∙ 	=	ଶܥ
ଵܥ ൅ ଶሺ1ܥ െ ݊ሻ;	
஼ଵ,஼ଷܯ ൌ ஼ଵ,஼ଶߨ ∙ ௎,஼ଶߨ ∙ ݉ ∙ ଶܥ ൅ ஼ଵ,ொߨ ∙ ௎,஼ଶߨ ∙
																			݉ ∙ ݊ ∙ 	=	ଶܥ
ൌ	1∙(െ1ሻ ∙ ݉ ∙ +ሺെ1ሻ	ଶܥ ∙ ሺെ1ሻ ∙ ݉ ∙ ݊ ∙ 		=	ଶܥ
݉ ∙ ଶܥ ∙ ሺ݊ െ 1ሻ;	
஼ଷ,஼ଵܯ ൌ ஼ଷ,ொߨ ∙ ஼ଵ,஼ଶߨ ∙ ݊ ∙ 1	=	ଶܥ ∙ 1 ∙ ݊ ∙ 		=	ଶܥ
݊ ∙ 	;ଶܥ
஼ଷ,஼ଷܯ ൌ ଷܥ ൅ ஼ଷ,ொߨ ∙ ௎,஼ଶߨ ∙ ݉ ∙ ݊ ∙ 		=	ଶܥ
ଷܥ ൅ 1 ∙ ሺെ1ሻ ∙ ݉ ∙ ݊ ∙ 		=	ଶܥ
ଷܥ െ ݉ ∙ ݊ ∙ 	;ଶܥ
௅,௅ܯ 				ൌ 	.ܮ
     Hence, matrix M  will look like: 
 

ܯ (6) ൌ ൥
ଵܥ ൅ ଶሺ1ܥ െ ݊ሻ ଶሺ݊ܥ݉ െ 1ሻ 0

ଶܥ݊ ଷܥ െ ଶܥ݊݉ 0
0 0 ܮ

൩.    

 

     It is easy to verify that M becomes singular if ݊ ൌ
ଵܥଷሺܥ ൅ ଵܥଶሺ݉ܥ/ଶሻܥ ൅  ଷሻ. Indeed, substituting thisܥ
into (6), we obtain matrix M as follows: 
 

(7) M=	

ۏ
ێ
ێ
ۍ
௠஼భሺ஼భା஼మሻ

௠஼భା஼య

௠஼భሺ஼యି௠஼మሻ

௠஼భା஼య
0

஼యሺ஼భା஼మሻ

௠஼భା஼య

஼యሺ஼యି௠஼మሻ

௠஼భା஼య
0

0 0 ےܮ
ۑ
ۑ
ې
.      

 

     Next, multiplying the second row by mC1 / C3 and 

adding it to the first row, we obtain matrix M with zero row. 
Just as in the first case, it means that one of the state 
variables can be expressed as a linear function of other 
state variables, and the set of state equations can be 
reduced. 
     What the first and the third versions of our example have 

in common is that the matrix M singularity is caused by 
certain relationships between the values of circuit 
components, but not by small component values. It 
becomes possible due to the existence of structural 
degeneration in the circuit. To clear up the conditions under 
which the mentioned singularities occur, we can use the 

templates for filling in matrix M with nonzero elements, 

whose examples are present above. In addition, we 
ensured that it is possible to reduce the set of differential 
state equations by way of zeroing small parameters in 

matrix M. The question arises of whether the mentioned 
reduction is mathematically correct and which specific 
features exhibit singularly perturbed state models that 
should invite our attention? The theory of singularly 
perturbed sets of differential equations provides an answer 
to this question.  
 
On mathematical features of singularly perturbed state 
equations 
     Let us bring briefly the issue of singularly perturbed state 
models and dwell on the some specific features of the 
mentioned models which differentiate them from “ordinary” 
models.      
     The singularly perturbed set of ordinary differential 
equations (ODE) has been the subject of some 
mathematical studies for a long time. We would like to 
mention the results concerning this subject obtained by A. 
Tikhonov (see, for example, [3]). He studied the Cauchy 
problem of the form:  
 

(8)    ൜
ܽሻ	ݔߤሶ ൌ ݂ሺݔ, ሺ0ሻݔ			,ሻݕ ൌ ݔ			,଴ݔ ∈ ,௡܀
	ܾሻ	ݕሶ ൌ ݃ሺݔ, ሺ0ሻݕ						,ሻݕ ൌ ݕ			,଴ݕ ∈ ,௠܀

  

 

where x and y are the n-dimensional and m-dimensional 
subvectors of state variables, respectively, determined in 

real spaces, and  μ is the diagonal matrix of parameters, 
whose magnitudes are small enough (say, with respect to 

unity). The initial conditions for state variables x and y at 

the initial time point t0 = 0 are given by vectors  ݔ଴and ݕ଴. 
According to Tikhonov’s theory, equations (8,a) and (8,b) 
exhibit processes with relatively fast and relatively slow 

rates, respectively, and therefore variables x and y are 
called fast and slow variables. The components of 

subvector x vary mainly on the relatively narrow boundary 

layer in the vicinity of the initial time ݐ ∈ [0	, ߬௕] and the 

components of subvector y are changed mainly beyond this 

layer. If matrix μ contains small parameters with different 
magnitudes, then the boundary layer is split into a series of 
boundary sublayers, each being characterized by its own 
extent.  

     For reasonably small values of parameters µ the set of 
equations (8) possesses the stiffness property, which 
complicates numerical solution of equations [4]. One of the 

ways to simplify the problem is to set small parameters µ to 
zero. Following such a simplification, model (8) is reduced 
to the form of the set of algebraic and differential equations: 
                                              

(9) ൜
ܽሻ	0 ൌ ݂ሺݔ, ݔ			,ሻݕ ∈ 																							,௡܀
		ܾሻ	ݕሶ ൌ ݃ሺݔ, ሺ0ሻݕ			,ሻݕ ൌ ݕ			,଴ݕ ∈ ,௠܀

       

 
which can be solved using simpler in a certain sense 
numerical methods. We discussed above structural 
conditions under which such a reduction of the state model 
is possible. Comparing the perturbed and reduced state 
models, some specific mathematical properties should be 
considered.  
     First, reducing equations (8) to the form of equations (9), 

we ignore initial conditions x(0), therefore the solution of 
(9) within the boundary layer may be different essentially 
from the solution of equations (8). Hence, such a model 
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reduction is not acceptable in some cases when we need to 
analyze the circuit within the boundary layer. For example, 
very-large-scale integrated circuits (VLSIs) provide a good 
example of those complex engineering objects, whose 
small model parameters exhibit various second-order 
effects as they are called [5]. Zeroing small parameters, we 
exclude those phenomena from consideration and lose 
information on some fast-acting processes which take place 
in the actual object. 
     Second, as was shown in the above discussion, small 
coefficients on some derivatives of state variables may be 
caused not only by small values of some parameters, but 
also because of the particular relationships between 
component values of the object analyzed. Typically, the 
mentioned relationships point to some kind of functional 
relationships between the parts of a complex object, which 
may require closer examination. For example, lateral 
transistor effects between the components which are 
mounted close together on the substrate of a VLSI offer 
examples of this kind relationships.   
     And third, reducing model (8) we should be assure that 
the solution of the reduced set of equations approaches  the 
solution of the solution of the perturbed set of equations at 
least beyond the boundary layer. As is known [3], 
Tikhonov’s theory establishes certain sufficient conditions, 
under which the mentioned solutions approach 
asymptotically each other. Those conditions can be 
interpreted by the example of a simple case.  
     Assume that we deal with the set of singularly perturbed 

differential equations (8) consisting of two variables x and 

y, that is, ݔ ∈ ݕ ଵ and܀ ∈  ௡. Zeroing parameter μ in܀
(8,a) and resolving the obtained algebraic equation 

݂ሺݔ,  ሻ= 0 with respect to variable x, we can represent xݕ
as a function of y: ݔ ൌ ߮ሺݕሻ. Substituting this into (8, b), 

then solving the obtained differential equation ݕሶ ൌ
݃ሺ߮ሺݕሻ, ,ሻݕ ሺ0ሻݕ ൌ  ଴ with respect to y, andݕ

substituting this to equation ݔ ൌ ߮ሺݕሻ, we can obtain the 
solution of the reduced set of equations (9). Let this solution 

be ሺ̅ݔ,  തሻ. The question arises, which root of the equationݕ

݂ሺݔ, 	=ሻݕ 0 should be selected in the case when the 
mentioned equation is nonlinear and possesses a series of 
roots?   
     According to the mentioned theory, the solution of the 

set of equations ݂ሺݔ, 	ሻ=0ݕ and ݕሶ ൌ ݃ሺ߮ሺݕሻ,  ,ሻݕ
ሺ0ሻݕ ൌ  ଴ approaches the solution of problem (8) withinݕ

a certain attraction closed domain (x,	 y)∈  if the root ܦ

ݔ ൌ ߮ሺݕሻ of equation ݂ሺݔ,  ሻ=0 is stable, as it isݕ

called, and the initial point (x0, y0) belongs to the domain 

D of the stable root ݔ ൌ ߮ሺݕሻ. If the mentioned 
conditions are met,  then the solution of the set of perturbed 

equations (8) ݔሺݐ, ,ݐሺݕ ሻ andߤ  ሻ approachߤ
asymptotically the solution of the reduced set of equations 

  :ሻ within certain time regionsݐതሺݕ ሻ andݐሺݔ̅ (9)

,ݐሺݔ ሻߤ → ߬௕			ሻ,ݐሺݔ̅ ൑ ݐ ൑ ܶ, 
,ݐሺݕ                (10) ሻߤ → 0			ሻ,ݐതሺݕ ൑ ݐ ൑ ܶ,       
where [0,	߬௕] is the boundary layer.  
     However, if the above conditions are not met, the 
solution of the reduced set of equations (9) and the 
perturbed set of equations (8) may be far from each other 
as much as you like. The following simple example 
illustrates this fact.  

     Example 2. Let us consider the singularly perturbed 
equation:   

ߤ    (11) ௗ௫

ௗ௧
ൌ ଶݐሺݔ െ ݔ ൅ 1ሻ,			ݔሺݐ଴ሻ ൌ  						,଴ݔ

where ߤ ൐ 0 is a small positive parameter. 

     The reduced equation obtained by setting µ = 0 is as 

follows: 0	ൌ ଶݐሺݔ െ ݔ ൅ 1ሻ. This equation possesses 

two roots: (1) x = 0 and (2) ݔ ൌ ଶݐ ൅ 1. Intuition 
suggests that the two roots provide different results of 
approximation. Which root should be selected? According 
to Tikhonov’s theory [3], the first root is unstable because 
డሾ௫൫௧మି௫ାଵ൯ሿ

డ௫
ൌ ଶݐ ൅ 1 ൐ 0 for x=0, and the second 

root is stable because 
డሾ௫൫௧మି௫ାଵ൯ሿ

డ௫
ൌ െݐଶ െ 1 ൏ 0 for 

ݔ ൌ ଶݐ ൅ 1. 
     Hence, if the initial point (t0, x0) lies in the upper half-

plane (that is, x > 0), then the curve of the solution of (11) 

approaches smoothly the ݔ ൌ ଶݐ ൅ 1 curve as is shown 

in Fig.3. And if the initial point (t0, x0) lies in the lower half-
plane, then the curve of the solution of the perturbed 
equation (11) and the curve of the solution of the reduced 
equation are moving farther apart. 
 
                                                    x 
 
                                                               x=t2+1 
 
 
 
 
                                                    (t0, x0)            
                                                                  x = 0            t 
 
                                                         (t0, x0) 

 
 
Fig.3. The curves of the solutions of the perturbed equation 
(continuous lines) and the reduced equation (dotted line) 
 

    It is evident that the mentioned problem may be the 
subject of special studies, whose aim is the development of 
special-purpose numerical methods of solution of singularly 
perturbed sets of state equations [4, 6]. 
     And the final subject which we would like to touch on: is 
it possible to expand the ideas of structural analysis 
discussed in the paper on other classes of objects different 
from the class of electronic circuits? To confirm this 
suggestion, we would like to mention a well-known principle 
of physical analogies. As is known, there are certain 
correspondences between variables in different physical 
areas. By way of illustration, Table 1 represents analogies 
between the electrical and mechanical variables. 
 
Table 1. Analogies between the electrical and mechanical 
variables. 

Electrical variable 
 

Mechanical variable 

Inductance, L Mass, m 
Electrical charge, q Linear displacement, x 
Time, t Time, t 
Current, i Linear velocity, v 
Electromotive force, e Force,  fM 

Electrical resistance, r Mechanical resistance, rM 
Electrical capacitance, C Pliability, CM 
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    The mentioned analogies like those given in Table 1, 
suggest that the development of the above approach in 
other engineering areas is valid.   
 
Conclusion  
     Singularly perturbed state equations form a particular 
class of mathematical models, whose investigation calls for 
the use of special-purpose numerical methods as well as 
qualitative methods allowing the designer establish specific 
structural properties of objects analyzed. It is customary to 
associate the phenomena of singularity with the existence 
of small parameters in the object model, whose zeroing 
does not involve substantial errors in numerical analysis.  
     Nevertheless, even simple examples discussed in the 
paper show that singularly perturbed state models are 
characterized by a series of specific properties, which 
should not be ignored in practical design of complex 
engineering objects. First, reduction of the state model by 
way of zeroing small parameters may lead to the model, 
whose behavior is essentially different form the behavior of 
the perturbed model. And second, except trivial cases when 
small component valuesare present in the circuit, model 
singularity may be caused by certain numerical 
relationships between the values of circuit components 
under proper structural conditions, namely, if the structural 
graph of the circuit contains structural degenerate cutsets 
and/or loops.The method of formula templates proposed in 

the paper allowing the designer to simplify the detection of 
the above structural conditions.  
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