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Abstract. Behavior of a complex system can be designed using state machines of the system classes. Using a Model-Driven Development 
approach models are transformed into an executable code. Structural and behavioral models can be extended with time concepts from the Modeling 
and Analysis of Real-Time and Embedded Systems (MARTE) profile. The refined models are used in transformation. We presented a case study of 
a home alarm system that illustrates an application development methodology. It was used in verification of the approach implemented in Framework 
for eXecutable UML (FXU). This MDD tool, used for development of an C# application from UML classes and state machines, was extended with the 
support of MARTE time concepts.  
 
Streszczenie. Złożone systemy są modelowane z użyciem maszyn stanowych. Transformacje modeli służą do budowy wykonywalnych aplikacji. 
Modele mogą być uszczegóławiane z wykorzystaniem pojęć czasowych zdefiniowanych w profilu MARTE. W pracy przedstawiono projekt systemu 
alarmowego ilustrującego modelowanie pojęć czasowych. Transformacja i realizacja aplikacji systemu była wykonana przy pomocy FXU - narzędzia 
do automatycznej generacji kodu z klas i maszyn stanowych, wspierającego transformacje modeli ze specyfikacją czasu z profilu MARTE. 
Wykorzystanie pojęć czasu z profilu MARTE w wytwarzaniu oprogramowania opartym na modelach 
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Słowa kluczowe: generacja kodu, UML, maszyny stanowe, profil MARTE, C#, modelowanie czasu, inżynieria oparta na modelach. 
 
 
Introduction 

Model-Driven Development (MDD) assists in reliable 
transformation of modelled system concepts into an 
executable code [1]. Behavior of complex systems can be 
designed with state machines of system classes. 

Non-functional requirements, especially time-related are 
important notions in a system modeling. Early versions of 
UML (1.x) were already supported by the standard OMG 
profile for Schedulability, Performance and Time (SPTP) [2]. 
A UML profile consists of a set of concepts specified with 
stereotypes that refine different UML meta-elements. The 
standard UML is extended, but its meta-model remains 
unchanged. Stereotypes are accompanied with tagged 
values, i.e. a kind of attributes that hold different data. 

Starting from the 2.0 version of UML, simple concepts 
referring to time, its duration and observation were specified 
in the SimpleTime package [3]. This time model is very 
simple and was intended to be enhanced in specialized 
profiles. However, the previous SPTP profile was not 
compatible with the new package. 

An extended OMG profile, compatible with UML 2.x and 
SysML, is MARTE: Modeling and Analysis of Real-Time 
Embedded Systems [4]. The profile consists of three main 
packages devoted to foundations, model design, and real 
time & embedded analysis. Time domain was specified in 
the Time package, which belongs to profile foundations. 
Referring to MARTE in this paper, we deal only with 
concepts of the MARTE::Time package. 

In order to benefit from an MDD approach that uses 
refined models with time specification, an adequate tool 
support is needed. Although, much work has been done on 
modelling with MARTE [5-9], there are still gaps in an 
automatic code development. Therefore, we extended the 
Framework of eXecutable UML (FXU) [10] to cover 
elements of MARTE. FXU is a MDD tool for C# code 
generation and application development from UML classes 
and state machines. 

In this paper, we present a case study to illustrate the 
idea of a model development with MARTE time concepts 
and its application in the MDD approach. The system was 
used in verification of the model to code transformation of 
MARTE elements realized in FXU. 

The structure of the rest of the paper is as follows. In the 
next Section we recall a related work. Section 3 describes 

briefly FXU. Sections 4, 5, and 6 present a case study 
requirements, a system model and experimental verification 
of the approach. Finally, Section 7 concludes the paper. 
 
Related work  

The time elements of MARTE find a broad application in 
system modeling and analysis, such as design of control 
systems, HW/SW co-design of embedded systems, test 
generation, and other systems, not only real-time ones. 

Currently, some CASE tools have been equipped with 
facilities to create models with UML profiles, including 
MARTE, e.g. IBM Rational Software Architect (since v. 7.0), 
Papyrus UML, MagicDraw, etc. However, an open issue is 
further transformation of a MARTE model and support for its 
concepts in a model or a programming code execution. 

Many approaches are devoted to development of 
embedded systems with use of specialized environments, 
such as SystemC, OpenCL, or Pharaon [5,6]. They are 
suitable for HW/SW, but are limited to domain languages.  

Another approaches are based on simulation, where 
models are directly simulated or transformed into a general 
simulation environments. In [7] authors used a Simulink 
platform to run models that are transformed from SySML 
models with MARTE specyfication.  

One of solutions is transformation of a MARTE model 
into an existing formal description. Afterwards, using 
analysis tools we can verify dependability requirements 
defined in the model. For example, transformation rules to 
Object-Z were discussed in [8], while ATL-based 
transformation to FIACRE model was presented in [9]. 
MARTE models were also transformed to stochastic Petri 
nets, Timed Petri nets, VHDL models, Promela, etc. 

In the contrary, the FXU approach deals with a general 
purpose language (C#) and its commonly used environment 
(MS Visual Studio) as a target of the model transformation. 
 
Transformation of UML/MARTE models  using FXU  

Framework of eXecutable UML (FXU) focused on 
transformation not only structural models, but also complete 
models of state machines [10,11]. It was the first tool that 
supported model-driven development of state machine 
models towards the C# programming language. At the 
moment, some tools support model transformation to C# 
code, but limited to class models (e.g. IBM Rational 
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Software Architect), or to very simplified state machines 
(e.g. Sparx Enterprise Architect). Except FXU, no other 
tools dealing with full state machines in C# were mentioned 
in a systematic review [12].   

Moreover, FXU takes into account one of the most 
comprehensive sets of state machine notions. The similar 
level of state machine complexity can be transformed by the 
IBM Rational Rhapsody tool, but not to the C# language. 

FXU consists of two components: FXU Generator and 
FXU Runtime Library. The generator transforms UML class 
and state machine models into the corresponding 
programming code and creates a software project. The 
project can be supplemented with an additional code, e.g. 
detailed implementations of operations. The final application 
is built from this code linked with the FXU Runtime Library 
that includes implementation of all state machine notions. 

One of FXU versions was extended with the capability 
for supporting a subset of MARTE profile. The following 
stereotypes of MARTE::Time, used in a class model and a 
state machine, are transformed into their corresponding 
code: TimedDomain, ClockType, Clock, TimedProcessing, 
TimedEvent, TimedValueSpecification. These stereotypes 
can be specified with sets of different tagged values that 
also were used in modeling and further taken into account 
in model transformation. The Runtime Library of FXU was 
extended with processing of MARTE events, as well as 
support for a logical clock and a chronometric clock.   
 
Requirements of a modelled system 

A model of a home alarm was designed in order to verify 
the approach. It was inspired by two models, an intrusion 
alarm [13] and a fire alarm [14]. The general idea of the 
system is a home facility that combines alarms preventing 
the home from a burglar intrusion and from a fire risk.  

The main actor of the model is a home administrator 
that can switch on or switch off an intrusion alarm or a fire 
alarm. An administrator operates the system with an access 
code. At first, “ON” button is pressed, next all digits have to 
be provided. A correct input of a code is shown by a green 
color diode. After an intrusion alarm is switched on, a red 
diode is blinking. It indicates the time to leave the home. 

The system is equipped with a smoke sensor. If a fire 
system is launched, the smoke sensor monitors the smoke 
level. If a high level of smoke is detected, a warning signal 
is triggered. A signal of the fire alarm is activated if smoke 
reaches its critical level.  

Another sensor is devoted to detection of an unintended 
movement in the home. When an intrusion alarm is 
switched on, a movement detection launches an 
appropriate signal. Before the signal is activated a red diode 
is blinking. During this time the alarm can be deactivated by 
an access code.  

Access code can be changed if all alarms are switched 
off. A successful change of the code is denoted by blinking 
of a green diode for a certain time. 

The system behavior is controlled by a set of time 
requirements that should be met by the system. In brackets 
we provided the exemplary values used in experiments. 

A) A time limit for introducing the whole access code (10 
sec.) After elapsing of this time, the inputted digits are 
invalided and the code has to be re-written. 

B) Activation time of the home alarm after an intrusion 
detection (20 sec.). If the correct code was not written after 
this time, an alarm signal is launched. 

C) Leaving time of the home after activation of the 
intrusion alarm (30 sec.) 

D) Starting time of access code input after pressing 
“ON” button (3 sec.) After this time the button has to be 
pressed once again.  

E) Time interval, in which an access code can be 
changed (30 sec.) If this time is exceeded, the code change 
process has to be repeated. 

F) Maximal interval between pressing of buttons on a 
keyboard during an input of an access code (3 sec.). 

G) Interval between consecutive flashes of red and 
green signal diodes. 

H) Time for stopping a signal of a critical smoke level 
(30 sec.). If after this time an acceptable smoke level was 
detected, the signal is deactivated. 

I) Time interval between displaying of consecutive 
messages about alarm statuses (2.5 sec) 

J) Maximal time of reloading a message on a display 
(0.5 sec.).  

K) Maximal time of displaying all messages (7 sec.) 
 
System model with MARTE profile 

The home alarm system was designed with UML class 
models and behavioural state machines. Time requirements 
described in the previous section were specified using 
stereotypies and tagged values from MARTE::Time.  

System elements that manage elapsing of time are 
provided in the Clock package (Fig. 1). It is labelled with the 
MARTE TimedDomain stereotype, as elements of the time 
domain specification are referenced by stereotypes of the 
profile used in other system models.  

In Figure 1, stereotyped classes with their MARTE 
tagged values are shown. Two clock types are specified in 
the system. CodeEnteringClock is a logical clock type, 
which manages time by events. Whereas AlarmClock 
specifies a chronometric clock type, associated with the 
physical time. Defined clocks use these clock types. During 
the model to code transformation, this time domain is 
searched for all instances of clocks used in other diagrams. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Clock types and clocks of the home alarm system  

 
The main classes that realize the system logic are 

placed in the Controller package (Fig. 2). The system 
process and communication between components is 
controlled by the AlarmController class. Processing and 
verification of an access code is managed by the 
CodeController class. Another classes correspond to 
different system components, like sensors, keypad, LED 
indicators, and a display. 

All classes from the Controller package were specified 
with their state machines labelled with MARTE stereotypes. 
As an example, a state machine of SmokeSensor is shown 
(Fig. 3). If a higher smoke level or a critical level 
encountered an object of SmokeSensor delivers information 
about the level to the alarm controller. 
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Fig.2. Main structural model of the system - classes from the Controller package 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. UML/MARTE state machine of the SmokeSensor class  
 

The sensor operates in two main modes: disabled and 
enabled, in accordance to the status of the alarm system. In 
the enabled state, the sensor can be in one of substates: 
detecting - while smoke is monitored, warning - when a 
higher smoke level was detected, and a critical level of 
smoke. Apart from the states, their internal operations and 
transitions with triggers, different MARTE elements are 
used in the behavioral specification of the smoke sensor.  

The whole state machine diagram is annotated with the 
TimedProcessing stereotype, shown with its tagged values 
in the left top corner of Figure 3. It was used for the 
specification of an event that activates the whole state 
machine (AlarmControllerSwitchOn in the start tag), and an 

event generated after the state machine end 
(AlarmControllerSwitchOff in the finish tag). The time limit of 
the entire state machine activity is specified with the 
duration tag. In case of exceeding this time, a special 
MARTE time exception is raised.  

The state machine of the smoke sensor uses a logical 
time. Events given in the complex state Enabled, such as 
after “1”, after “2”, after “10000”, are defined using a logical 
clock and specified with the TimedEvent stereotypes 
(shown in the bottom part of Figure 3).  

Activities performed on entry to states Warning and 
CriticalSmokeDetected are annotated with the 
TimedProcessing stereotypes. Events that are generated at 
the beginning and just after the finish of these activities are 
defined in appropriate tags of the stereotypes (tags given in 
the right top corner in Figure 3). 

In an analogous way, state machines of the remaining 
classes were created and specified with the MARTE 
stereotypes and tagged values.  
 
Code generation and application verification 

Structural and behavioral models of the system refined 
with the MARTE specification were prepared using IBM 
Rational Software Architect. Further, the models were 
transformed into the corresponding source code by the FXU 
Generator. The final application was built in the Visual 
Studio using the generated C# project and the FXU 
Runtime Library. Additional details of the operations, which 
were not specified in the model, were added to the source 
code of methods. The final application was run and tested 
in experiments, in which the system behavior was 
compared with the model specification.  

Test scenarios of system behavior were designed in 
correspondence to the state machine diagrams. The 
scenarios took into account a typical and critical usage of 
the system. Then, they were verified against application 
behavior observed by a user with tool support. An 
exemplary test scenario is shown in Table 1. Expected 
results are specified in terms of the modeled behavior. 

Four mechanisms were used in verification of the 
application behavior: application logs, application traces, 
measured time relations, and timing logs. 
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Table 1. Test Scenario 
No Step Expected results 
1 Start of the home 

alarm 
The alarm controller starts working in 
the detection state. Several objects 
launch their activities: keypad in its idle 
state and display in a starting place. 
Sensors of movement and of smoke are 
disabled.  

2 Selection of the 
intrusion alarm 
only 

Display class comes to the 
IntrusionAlarmSelected state. 

3 Pressing of the 
“ON” button 

The alarm controller proceeds to a 
detection substate in which an intrusion 
alarm is armed. Keypad moves on to its 
position accepting arming or disarming 
of an alarm. Controller of an access 
code begins to work.  

4 Input of a correct 
access code (4-
digit) 

The code controller moves to the 
EnteringCode state, and reads the 
consecutive digits. After accepting of a 
number of correct digits, it realises an 
activity in the Correct state, waits for the 
prescribed time delay, and finishes its 
behaviour via the final steps.  
Keypad returns to its idle state.  
Alarm controller moves on to 
IntrusionAlarmActivationDelay and after 
the appropriate time delay activates an  
intrusion alarm. 
Movement sensor transits to the 
MovementnotDetected state. 

5 Detection of a 
signal that 
indicates 
movement 

The object of a movement sensor is 
enabled and reaches its movement 
detection state. The alarm controller 
goes to its state of movement detection. 

6 Access code 
missing after a 40 
sec. time delay 

The alarm controller goes over  to its 
AlarmState that is a substate of the 
intrusion detection functionality.  

 
Application logs consist of information generated directly 

by the application and outputted in a display or into a file. 
Different application phases were observed: with intrusion 
and smoke alarms being switched on or off, different stages 
of alarm activities, processing of an access code, reports of 
sensors after a movement detection etc. We could confirm 
the behaviors specified in various test scenarios. 

Traces of the application were also analyzed using FXU 
Tracer [15]. Traces are collected during an application run, 
and can be further studied together with the UML models. 
We can re-run an application trace in a step mode, 
considering all states of the original state machines and 
verifying their transitions. 

Time relations in the application were examined with 
assistance of the stopper mechanism of the .NET 
environment (System.Diagnostics.Stopwatch class). 
Current times were measured by stoppers, added to the 
application logs, and displayed during the application run. 
For example, selected measured time relations referred to: 
time intervals between consecutive data showed in the 
system display, times of access code inputs, times of 
launching of the alarm signal after an intrusion detection. It 
was assumed that the time relations can deviate of 
maximum 1% of the values specified in the requirements. 
All measured times fulfilled this condition.  

Finally, a detailed verification of time relations was 
realized using logs generated by the log4net library. In a 
recommended place, a log file was created. The file 
included all information about traversal of a state machine 
associated with its timestamps. Therefore, a comprehensive 
time analysis is possible. We defined various time 
constraints to be verified based on these logs. The 
analyzed logs confirmed the system behavior specified by 
UML models with MARTE::Time.  

Conclusions 
We presented the application of MARTE time concepts 

in the modelling and development of an application. The 
modelling of time relations and time requirements was 
beneficial due to the tool support that allow us to 
automatically convert a time specification into its 
corresponding code in a final application. This MDD 
approach gives the advantage to concentrate on the time 
relations in the early phases of a system development. For 
more complex scenarios, the approach of direct model to 
code transformation can be combined with formal 
verifications [8,9]. However, specifying all necessary 
MARTE stereotypes and their tagged values could be 
wearisome. Another limitation may be incorporation of low 
level specification of time support architecture into higher 
level models. 
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