
178 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 11/2015

Anna DEREZIŃSKA, Marian SZCZYKULSKI

Warsaw University of Technology, Institute of Computer Science

doi:10.15199/48.2015.11.43

Application of time concepts from the MARTE profile in a Model-
Driven Development case study

Abstract. Behavior of a complex system can be designed using state machines of the system classes. Using a Model-Driven Development
approach models are transformed into an executable code. Structural and behavioral models can be extended with time concepts from the Modeling
and Analysis of Real-Time and Embedded Systems (MARTE) profile. The refined models are used in transformation. We presented a case study of
a home alarm system that illustrates an application development methodology. It was used in verification of the approach implemented in Framework
for eXecutable UML (FXU). This MDD tool, used for development of an C# application from UML classes and state machines, was extended with the
support of MARTE time concepts.

Streszczenie. Złożone systemy są modelowane z użyciem maszyn stanowych. Transformacje modeli służą do budowy wykonywalnych aplikacji.
Modele mogą być uszczegóławiane z wykorzystaniem pojęć czasowych zdefiniowanych w profilu MARTE. W pracy przedstawiono projekt systemu
alarmowego ilustrującego modelowanie pojęć czasowych. Transformacja i realizacja aplikacji systemu była wykonana przy pomocy FXU - narzędzia
do automatycznej generacji kodu z klas i maszyn stanowych, wspierającego transformacje modeli ze specyfikacją czasu z profilu MARTE.
Wykorzystanie pojęć czasu z profilu MARTE w wytwarzaniu oprogramowania opartym na modelach

Keywords: code generation, UML, state machines, MARTE profile, C#, time modeling. Model-Driven Engineering
Słowa kluczowe: generacja kodu, UML, maszyny stanowe, profil MARTE, C#, modelowanie czasu, inżynieria oparta na modelach.

Introduction

Model-Driven Development (MDD) assists in reliable
transformation of modelled system concepts into an
executable code [1]. Behavior of complex systems can be
designed with state machines of system classes.

Non-functional requirements, especially time-related are
important notions in a system modeling. Early versions of
UML (1.x) were already supported by the standard OMG
profile for Schedulability, Performance and Time (SPTP) [2].
A UML profile consists of a set of concepts specified with
stereotypes that refine different UML meta-elements. The
standard UML is extended, but its meta-model remains
unchanged. Stereotypes are accompanied with tagged
values, i.e. a kind of attributes that hold different data.

Starting from the 2.0 version of UML, simple concepts
referring to time, its duration and observation were specified
in the SimpleTime package [3]. This time model is very
simple and was intended to be enhanced in specialized
profiles. However, the previous SPTP profile was not
compatible with the new package.

An extended OMG profile, compatible with UML 2.x and
SysML, is MARTE: Modeling and Analysis of Real-Time
Embedded Systems [4]. The profile consists of three main
packages devoted to foundations, model design, and real
time & embedded analysis. Time domain was specified in
the Time package, which belongs to profile foundations.
Referring to MARTE in this paper, we deal only with
concepts of the MARTE::Time package.

In order to benefit from an MDD approach that uses
refined models with time specification, an adequate tool
support is needed. Although, much work has been done on
modelling with MARTE [5-9], there are still gaps in an
automatic code development. Therefore, we extended the
Framework of eXecutable UML (FXU) [10] to cover
elements of MARTE. FXU is a MDD tool for C# code
generation and application development from UML classes
and state machines.

In this paper, we present a case study to illustrate the
idea of a model development with MARTE time concepts
and its application in the MDD approach. The system was
used in verification of the model to code transformation of
MARTE elements realized in FXU.

The structure of the rest of the paper is as follows. In the
next Section we recall a related work. Section 3 describes

briefly FXU. Sections 4, 5, and 6 present a case study
requirements, a system model and experimental verification
of the approach. Finally, Section 7 concludes the paper.

Related work

The time elements of MARTE find a broad application in
system modeling and analysis, such as design of control
systems, HW/SW co-design of embedded systems, test
generation, and other systems, not only real-time ones.

Currently, some CASE tools have been equipped with
facilities to create models with UML profiles, including
MARTE, e.g. IBM Rational Software Architect (since v. 7.0),
Papyrus UML, MagicDraw, etc. However, an open issue is
further transformation of a MARTE model and support for its
concepts in a model or a programming code execution.

Many approaches are devoted to development of
embedded systems with use of specialized environments,
such as SystemC, OpenCL, or Pharaon [5,6]. They are
suitable for HW/SW, but are limited to domain languages.

Another approaches are based on simulation, where
models are directly simulated or transformed into a general
simulation environments. In [7] authors used a Simulink
platform to run models that are transformed from SySML
models with MARTE specyfication.

One of solutions is transformation of a MARTE model
into an existing formal description. Afterwards, using
analysis tools we can verify dependability requirements
defined in the model. For example, transformation rules to
Object-Z were discussed in [8], while ATL-based
transformation to FIACRE model was presented in [9].
MARTE models were also transformed to stochastic Petri
nets, Timed Petri nets, VHDL models, Promela, etc.

In the contrary, the FXU approach deals with a general
purpose language (C#) and its commonly used environment
(MS Visual Studio) as a target of the model transformation.

Transformation of UML/MARTE models using FXU

Framework of eXecutable UML (FXU) focused on
transformation not only structural models, but also complete
models of state machines [10,11]. It was the first tool that
supported model-driven development of state machine
models towards the C# programming language. At the
moment, some tools support model transformation to C#
code, but limited to class models (e.g. IBM Rational

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 11/2015 179

Software Architect), or to very simplified state machines
(e.g. Sparx Enterprise Architect). Except FXU, no other
tools dealing with full state machines in C# were mentioned
in a systematic review [12].

Moreover, FXU takes into account one of the most
comprehensive sets of state machine notions. The similar
level of state machine complexity can be transformed by the
IBM Rational Rhapsody tool, but not to the C# language.

FXU consists of two components: FXU Generator and
FXU Runtime Library. The generator transforms UML class
and state machine models into the corresponding
programming code and creates a software project. The
project can be supplemented with an additional code, e.g.
detailed implementations of operations. The final application
is built from this code linked with the FXU Runtime Library
that includes implementation of all state machine notions.

One of FXU versions was extended with the capability
for supporting a subset of MARTE profile. The following
stereotypes of MARTE::Time, used in a class model and a
state machine, are transformed into their corresponding
code: TimedDomain, ClockType, Clock, TimedProcessing,
TimedEvent, TimedValueSpecification. These stereotypes
can be specified with sets of different tagged values that
also were used in modeling and further taken into account
in model transformation. The Runtime Library of FXU was
extended with processing of MARTE events, as well as
support for a logical clock and a chronometric clock.

Requirements of a modelled system

A model of a home alarm was designed in order to verify
the approach. It was inspired by two models, an intrusion
alarm [13] and a fire alarm [14]. The general idea of the
system is a home facility that combines alarms preventing
the home from a burglar intrusion and from a fire risk.

The main actor of the model is a home administrator
that can switch on or switch off an intrusion alarm or a fire
alarm. An administrator operates the system with an access
code. At first, “ON” button is pressed, next all digits have to
be provided. A correct input of a code is shown by a green
color diode. After an intrusion alarm is switched on, a red
diode is blinking. It indicates the time to leave the home.

The system is equipped with a smoke sensor. If a fire
system is launched, the smoke sensor monitors the smoke
level. If a high level of smoke is detected, a warning signal
is triggered. A signal of the fire alarm is activated if smoke
reaches its critical level.

Another sensor is devoted to detection of an unintended
movement in the home. When an intrusion alarm is
switched on, a movement detection launches an
appropriate signal. Before the signal is activated a red diode
is blinking. During this time the alarm can be deactivated by
an access code.

Access code can be changed if all alarms are switched
off. A successful change of the code is denoted by blinking
of a green diode for a certain time.

The system behavior is controlled by a set of time
requirements that should be met by the system. In brackets
we provided the exemplary values used in experiments.

A) A time limit for introducing the whole access code (10
sec.) After elapsing of this time, the inputted digits are
invalided and the code has to be re-written.

B) Activation time of the home alarm after an intrusion
detection (20 sec.). If the correct code was not written after
this time, an alarm signal is launched.

C) Leaving time of the home after activation of the
intrusion alarm (30 sec.)

D) Starting time of access code input after pressing
“ON” button (3 sec.) After this time the button has to be
pressed once again.

E) Time interval, in which an access code can be
changed (30 sec.) If this time is exceeded, the code change
process has to be repeated.

F) Maximal interval between pressing of buttons on a
keyboard during an input of an access code (3 sec.).

G) Interval between consecutive flashes of red and
green signal diodes.

H) Time for stopping a signal of a critical smoke level
(30 sec.). If after this time an acceptable smoke level was
detected, the signal is deactivated.

I) Time interval between displaying of consecutive
messages about alarm statuses (2.5 sec)

J) Maximal time of reloading a message on a display
(0.5 sec.).

K) Maximal time of displaying all messages (7 sec.)

System model with MARTE profile

The home alarm system was designed with UML class
models and behavioural state machines. Time requirements
described in the previous section were specified using
stereotypies and tagged values from MARTE::Time.

System elements that manage elapsing of time are
provided in the Clock package (Fig. 1). It is labelled with the
MARTE TimedDomain stereotype, as elements of the time
domain specification are referenced by stereotypes of the
profile used in other system models.

In Figure 1, stereotyped classes with their MARTE
tagged values are shown. Two clock types are specified in
the system. CodeEnteringClock is a logical clock type,
which manages time by events. Whereas AlarmClock
specifies a chronometric clock type, associated with the
physical time. Defined clocks use these clock types. During
the model to code transformation, this time domain is
searched for all instances of clocks used in other diagrams.

Fig.1. Clock types and clocks of the home alarm system

The main classes that realize the system logic are

placed in the Controller package (Fig. 2). The system
process and communication between components is
controlled by the AlarmController class. Processing and
verification of an access code is managed by the
CodeController class. Another classes correspond to
different system components, like sensors, keypad, LED
indicators, and a display.

All classes from the Controller package were specified
with their state machines labelled with MARTE stereotypes.
As an example, a state machine of SmokeSensor is shown
(Fig. 3). If a higher smoke level or a critical level
encountered an object of SmokeSensor delivers information
about the level to the alarm controller.

180 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 11/2015

Fig.2. Main structural model of the system - classes from the Controller package

Fig.3. UML/MARTE state machine of the SmokeSensor class

The sensor operates in two main modes: disabled and
enabled, in accordance to the status of the alarm system. In
the enabled state, the sensor can be in one of substates:
detecting - while smoke is monitored, warning - when a
higher smoke level was detected, and a critical level of
smoke. Apart from the states, their internal operations and
transitions with triggers, different MARTE elements are
used in the behavioral specification of the smoke sensor.

The whole state machine diagram is annotated with the
TimedProcessing stereotype, shown with its tagged values
in the left top corner of Figure 3. It was used for the
specification of an event that activates the whole state
machine (AlarmControllerSwitchOn in the start tag), and an

event generated after the state machine end
(AlarmControllerSwitchOff in the finish tag). The time limit of
the entire state machine activity is specified with the
duration tag. In case of exceeding this time, a special
MARTE time exception is raised.

The state machine of the smoke sensor uses a logical
time. Events given in the complex state Enabled, such as
after “1”, after “2”, after “10000”, are defined using a logical
clock and specified with the TimedEvent stereotypes
(shown in the bottom part of Figure 3).

Activities performed on entry to states Warning and
CriticalSmokeDetected are annotated with the
TimedProcessing stereotypes. Events that are generated at
the beginning and just after the finish of these activities are
defined in appropriate tags of the stereotypes (tags given in
the right top corner in Figure 3).

In an analogous way, state machines of the remaining
classes were created and specified with the MARTE
stereotypes and tagged values.

Code generation and application verification

Structural and behavioral models of the system refined
with the MARTE specification were prepared using IBM
Rational Software Architect. Further, the models were
transformed into the corresponding source code by the FXU
Generator. The final application was built in the Visual
Studio using the generated C# project and the FXU
Runtime Library. Additional details of the operations, which
were not specified in the model, were added to the source
code of methods. The final application was run and tested
in experiments, in which the system behavior was
compared with the model specification.

Test scenarios of system behavior were designed in
correspondence to the state machine diagrams. The
scenarios took into account a typical and critical usage of
the system. Then, they were verified against application
behavior observed by a user with tool support. An
exemplary test scenario is shown in Table 1. Expected
results are specified in terms of the modeled behavior.

Four mechanisms were used in verification of the
application behavior: application logs, application traces,
measured time relations, and timing logs.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 11/2015 181

Table 1. Test Scenario
No Step Expected results
1 Start of the home

alarm
The alarm controller starts working in
the detection state. Several objects
launch their activities: keypad in its idle
state and display in a starting place.
Sensors of movement and of smoke are
disabled.

2 Selection of the
intrusion alarm
only

Display class comes to the
IntrusionAlarmSelected state.

3 Pressing of the
“ON” button

The alarm controller proceeds to a
detection substate in which an intrusion
alarm is armed. Keypad moves on to its
position accepting arming or disarming
of an alarm. Controller of an access
code begins to work.

4 Input of a correct
access code (4-
digit)

The code controller moves to the
EnteringCode state, and reads the
consecutive digits. After accepting of a
number of correct digits, it realises an
activity in the Correct state, waits for the
prescribed time delay, and finishes its
behaviour via the final steps.
Keypad returns to its idle state.
Alarm controller moves on to
IntrusionAlarmActivationDelay and after
the appropriate time delay activates an
intrusion alarm.
Movement sensor transits to the
MovementnotDetected state.

5 Detection of a
signal that
indicates
movement

The object of a movement sensor is
enabled and reaches its movement
detection state. The alarm controller
goes to its state of movement detection.

6 Access code
missing after a 40
sec. time delay

The alarm controller goes over to its
AlarmState that is a substate of the
intrusion detection functionality.

Application logs consist of information generated directly

by the application and outputted in a display or into a file.
Different application phases were observed: with intrusion
and smoke alarms being switched on or off, different stages
of alarm activities, processing of an access code, reports of
sensors after a movement detection etc. We could confirm
the behaviors specified in various test scenarios.

Traces of the application were also analyzed using FXU
Tracer [15]. Traces are collected during an application run,
and can be further studied together with the UML models.
We can re-run an application trace in a step mode,
considering all states of the original state machines and
verifying their transitions.

Time relations in the application were examined with
assistance of the stopper mechanism of the .NET
environment (System.Diagnostics.Stopwatch class).
Current times were measured by stoppers, added to the
application logs, and displayed during the application run.
For example, selected measured time relations referred to:
time intervals between consecutive data showed in the
system display, times of access code inputs, times of
launching of the alarm signal after an intrusion detection. It
was assumed that the time relations can deviate of
maximum 1% of the values specified in the requirements.
All measured times fulfilled this condition.

Finally, a detailed verification of time relations was
realized using logs generated by the log4net library. In a
recommended place, a log file was created. The file
included all information about traversal of a state machine
associated with its timestamps. Therefore, a comprehensive
time analysis is possible. We defined various time
constraints to be verified based on these logs. The
analyzed logs confirmed the system behavior specified by
UML models with MARTE::Time.

Conclusions
We presented the application of MARTE time concepts

in the modelling and development of an application. The
modelling of time relations and time requirements was
beneficial due to the tool support that allow us to
automatically convert a time specification into its
corresponding code in a final application. This MDD
approach gives the advantage to concentrate on the time
relations in the early phases of a system development. For
more complex scenarios, the approach of direct model to
code transformation can be combined with formal
verifications [8,9]. However, specifying all necessary
MARTE stereotypes and their tagged values could be
wearisome. Another limitation may be incorporation of low
level specification of time support architecture into higher
level models.

REFERENCES
[1] Liddle S.W., Model-Driven Software Development, Embley,

D.W., Thalheim, B. (eds.) Handbook of Conceptual Modeling,
Springer (2011), 17-54

[2] Object Management Group, UML Profile for Schedulability,
Performance, and Time Specification, version 1.1. (2005),
http://www.omg.org/spec/SPTP/

[3] Object Management Group, OMG Unified Modeling Language,
www.omg.org/spec/UML/

[4] Object Management Group, UML Profile for MARTE: Modeling
and Analysis of Real-Time Embedded Systems. version 1.1.
(2011), http://www.omg.org/spec/MARTE/

[5] Rodrigues A.W.O.; Guyomarch F.; Dekeyser J.-L., An MDE

Approach for Automatic Code Generation from UML/MARTE to
OpenCL, Computing in Science & Engineering, 15 (2013), No
1, 46-55

[6] Posadas H.; Peñil, P.; Nicolaas, A.; Villar E., System synthesis
from UML/MARTE models: The PHARAON approach,
Electronic System Level Synthesis Conference, (2013), 1-8

[7] Morelli M., Di Natale M., An MDE approach for the design of
platform-aware controls in performance-sensitive applications,
Emerging Technology and Factory Automation, IEEE (2014), 1-
8

[8] Haiyang X., Zhuang Y., A formal transformation approach of
MARTE model, 2nd Inter. Conf. on Information and Control
Engineering, IEEE, (2015) 550-554

[9] Zhang T. Jouault F,et al. MDE-Based Model Transformation:
From MARTE Model to FIACRE Model, Journal of Software, 20
(2009), No.2, 214-233

[10] Pilitowski R., Derezinska A., Code generation and execution
framework for UML 2.0 classes and state machines, T. Sobh
(eds.) Innovations and Advanced Techniques in Computer and
Information Science and Engineering, Springer (2007), 421-427

[11] FXU Framework for eXecutable UML ,
http://galera.ii.pw.edu.pl/~adr/FXU/

[12] Dominguez E., Perez B., Rubio A.L., Zapata M.A, A systematic
Review of Code Generation Proposals from State Machine
Specifications, Information & Software Technology, 54 (2012),
No. 10, 1045 – 1066

[13] Richardson M.W., Designing a Home Alarm using the UML and
implementing it using C++ and VxWorks, I-Logicx UK Ltd.,
http://www.uml.org.cn/oobject/vxworks.pdf

[14] Graf S., Ober I., Ober I., A real-time profile for UML,
International Journal on Software Tools for Technology
Transfer, 8 (2006), No. 2, 113-127

[15] Derezińska A., Szczykulski M., Tracing of state machine
execution in model-driven development framework, Proc. of the
2nd International Conference on Information Technologies,
ICIT'2010, IEEE Soc. (2010), 109-112

Authors: dr inż. Anna Derezińska, Warsaw University of
Technology, Institute of Computer Science, ul. Nowowiejska 15/19,
00-665 Warszawa, E-mail: A.Derezinska@ii.pw.edu.pl; mgr inż.
Marian Szczykulski, E-mail: marian.s27@gmail.com

The correspondence address is:
e-mail: A.Derezinska@ii.pw.edu.pl

