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A class of positive and stable time-varying electrical circuits 
 
 

Abstract. The positivity and stability of a class of time-varying continuous-time linear systems and electrical circuits are addressed. Sufficient 
conditions for the positivity and asymptotic stability of the systems are established. It is shown that there exists a large class of positive and 
asymptotically stable electrical circuits with time-varying parameters. Examples of positive electrical circuits are presented.  
 
Streszczenie. W pracy rozpatrywana jest dodatniość I stabilność asymptotyczna pewnej klasy obwodów elektrycznych o zmiennych w czasie 
parametrach. Podano warunki dostateczne dodatniości i stabilności asymptotycznej układów i obwodów elektrycznych. Pokazano, że istnieje 
obszerna klasa dodatnich i stabilnych asymptotycznie obwodów elektrycznych o zmiennych w czasie parametrach. Rozważania zilustrowano 
przykładami obwodów elektrycznych. (O pewnej klasie dodatnich i stabilnych obwodów elektrycznych o zmiennych w czasie parametrach). 
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Introduction 

A dynamical system is called positive if its trajectory 
starting from any nonnegative initial state remains forever in 
the positive orthant for all nonnegative inputs. An overview 
of state of the art in positive theory is given in the 
monographs [3, 7]. Variety of models having positive 
behavior can be found in engineering, economics, social 
sciences, biology and medicine, etc..  

Stability of time-varying linear systems and their 
exponents have been addressed in [1, 2]. 

The positivity  and stability of  fractional  time varying 
discrete-time linear systems have been addressed in [9, 12, 
13, 18] and  the stability of continuous-time linear systems 
with delays in [14]. The fractional positive linear systems 
have been analyzed in [5, 6, 16, 17, 20, 21].The positive 
electrical circuits and their reachability have been 
considered in [8, 11] and the controllability and observability 
in [4]. The stability and stabilization of positive fractional 
linear systems by state-feedbacks have been analyzed in 
[15, 16]. The Hurwitz stability of Metzler matrices has been 
investigated in [16, 17]. 

In this paper positivity and stability of a class of time-
varying electrical systems will be addressed. 

The paper is organized as follows. In section 2 the 
solution to the scalar time-varying linear system and some 
stability tests of positive continuous-time linear systems are 
recalled. Sufficient conditions for the positivity and 
asymptotic stability of a class of time-varying continuous-
time linear systems and electrical systems are established 
in section 3. The positive and asymptotically stable 
electrical circuits with time-varying parameter are 
addressed in section 4. Concluding remarks are given in 
section 5. 

The following notation will be used:   - the set of real 

numbers, mn  - the set of mn  real matrices, mn
  - 

the set of mn  matrices with nonnegative entries and 
1

  nn , nM - the set of nn  Metzler matrices (real 

matrices with nonnegative off-diagonal entries), nI - the 

nn  identity matrix, T – denotes the transposition of matrix 
(vector).   
 

Preliminaries 
Consider the scalar time-varying continuous-time 

linear system 
 

(1)  )()()()()( tutbtxtatx  , ),0[ t  
 

where x(t) and u(t) are the state and input of the system and 
a(t), b(t) are continuous-time functions. 
Lemma 1. The solution of (1) for given initial condition 

)0(0 xx   and input )(tu  has the form 
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Proof is given in [18]. 
Consider the autonomous continuous-time linear system 
with constant coefficients 
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where ntx )(  is the state vector and nij MaA  ][ . 

Theorem 1. [17] The positive system (3) is asymptotically 
stable if and only if one of the following equivalent 
conditions is satisfied: 
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3) The diagonal entries of the matrices 
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for k = 1,…,n – 1. 
4) All diagonal entries of the upper (lower) triangular 

matrix  
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are negative, i.e. 0~ kka  for k = 1,…,n and the matrices A
~

 

has been obtained from the matrix A by the use of 
elementary row operations [7, 16]. 
 
Positive and stable time-varying continuous-time linear 
systems 
Consider the time-varying linear system 
 

(8a) )()()()()( tutBtxtAtx   

(8b) )()()()()( tutDtxtCty   
 

where ntx )( , mtu )( , pty )(  are the state, input 

and output vectors and ,)( nntA   mntB )( , 

,)( nptC   mptD )(  are real matrices with entries 

depending continuously on time and 0)(det tA  for 

),0[ t . 

Definition 1. The system (8) is called positive if ntx )( , 
pty )( , ),0[ t  for any initial conditions nx 0  

and all inputs ,)( mtu   ),0[ t .  

Theorem 2. The time-varying linear system (8) with upper 
triangular form 
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or lower triangular form 
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with negative diagonal entries for ),0[ t  and 
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is positive and asymptotically stable. 
Proof. For the matrices )(tA  and )(tB  using (8a) and (9) 

we obtain 
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By Lemma 1 the solution of (11) has the form 
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and )(txn , ),0[ t  for all nx0  and 

)(txk  for ),0[ t . 

Similarly, form (3.1a) and (3.2a) we obtain 
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From (14) we have  )(1 txn  for ),0[ t  since 

)(txn  for ),0[ t . 

Continuing this procedure we obtain 
 

(15) )(txk  for k = 1,2,…,n and ),0[ t  
 

and any nonnegative initial conditions and inputs. 

From (8b) it follows that pty )( , ),0[ t  if the 

conditions (9) and (10) are satisfied for any nonnegative 
initial conditions and all nonnegative inputs. 
If the matrix (9) has negative diagonal entries then its all 
eigenvalues are negative function for ),0[ t  and from 

(2) for 0)( tu  it follows that 0)(lim 


tx
t

 for all nx 0 .  

Remark 1. To check the asymptotic stability of the time-
varying continuous-time linear system (1) the Theorem 1 
can be used. 
The system is asymptotically stable if one of the equivalent 
conditions of Theorem 1 is satisfied for all ),0[ t . 

Example 1. Consider the time-varying continuous-time 
linear system (1) with the matrices 
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From (3.9) it follows that the system is positive and 

asymptotically stable since )()( 3 tMtAl  , 3)( tB , 
31)( 

tC  for ),0[ t . 
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From (16) we have 
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Using Lemma 1 we can find in sequence the positive 
solution of the equation (17). 
From Theorem 1 if the matrix (9) is diagonal then we have 
the following corollary. 
Corollary 1. If the matrix (9) is diagonal with negative 
diagonal entries for ),0[ t , then the time-varying linear 

system (8) is positive and asymptotically stable. 
 
Positive time-varying linear circuits 

Consider the time-varying electrical circuit shown in 
Fig. 1 with given nonzero resistances )(1 tR , )(2 tR  

inductance )(tL , capacitance )(tC  depending on time t, 

and source voltages )(1 te , )(2 te .  
 

 
Fig. 1. Electrical circuit 
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and using Kirchhoff’s laws, we can write the equation 
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which can be written in the form 
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From (20b) it follows that for 0)(1 tR , 0)(2 tR , 0)( tL , 

0)( tC  and 0
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 for ),0[ t  the 

matrix 2)( MtA   is diagonal and asymptotically stable and 
22)( 

tB  for ),0[ t . Therefore, the electrical circuit 

is a positive and asymptotically stable. 
Now let us consider electrical circuit shown on Fig. 2 with 
given positive resistances nktRk ,...,1,0),(  , inductances 

2,...,4,2),( nitLi  , capacitances 1,...,3,1),( njtC j   

depending on time t and source voltages 
)(),...,(),( 21 tetete n .  We shall show that this electrical 

circuit is a positive and asymptotically stable time-varying 
linear system. 

 
Fig. 2. Positive and stable electrical circuit. 
Using (8) and the Kirchhoff’s law we can write the equations 
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which can be written in the form 
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The electrical circuit is positive and asymptotically stable 
time-varying linear system since all diagonal entries of the 
matrix )(tA  are negative functions of ),0[ t  and the 
matrix )(tB  has nonnegative entries for ),0[ t . The 
solution of the equation (22a) can be found using Lemma 1. 
 
Concluding remarks 

The positivity and asymptotic stability of a class of time-
varying continuous-time linear systems and electrical 
circuits have been addressed. Sufficient conditions for the 
positivity and asymptotic stability of the electrical circuits 
have been established. It has been shown that there exists 
a large class of positive and asymptotically stable electrical 
circuits with time-varying parameters. The considerations 
have been illustrated by positive and asymptotically stable 
electrical circuits. The consideration can be extended to 
fractional time-varying linear systems and  fractional 
electrical circuits. 
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