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Calculation in 3D of magnetic fields generated by underground 
cable of complex geometry 

 
 

Abstract. Magnetic fields generated by underground cables can be high enough that some utility customers are concerned about their health effects 
and electromagnetic interference. The lay-out of the underground cables is much more similar to a broken line than to straight line. In the study the 
magnetic flux densities above the earth surface produced by underground cables of complex geometry are estimated. It is assumed, that the 
currents induced in the earth can be neglected, so the magnetic field can be obtained using the Biot-Savart law. The analytical formulas for 
calculating the 3D magnetic field with respect to a convenient and unique reference system are derived.  
 
Streszczenie. Praca przedstawia metodę obliczania pola magnetycznego w otoczeniu kabli podziemnych o złożonej geometrii. Trasę kabla 
aproksymuje się odcinkami linii łamanej, pomija się prądy indukowane w ziemi oraz wyznacza indukcję magnetyczną stosując prawo Biota-Savarta i 
zasadę superpozycji. Uzyskane zależności analityczne umożliwiają analizę trójwymiarowego pola magnetycznego w dowolnie przyjętym układzie 
odniesienia. (Obliczanie rozkładu pola magnetycznego w otoczeniu kabli podziemnych o złożonej geometrii). 
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Introduction 

Over the few decades many studies have been 
undertaken in an attempt to analyze the potential health 
hazards that may arise from human exposure to electric 
and magnetic fields. The International Commission on Non-
Ionizing Radiation, Protection (ICNIRP) in cooperation with 
the Environmental Division of the World Health 
Organization have assessed the available knowledge and 
published in 1998 the guidelines  for safe public nad 
occupational exposure [1]. In 1999 the recommendation of 
the European Union Council on the limitation of exposure of 
the general public to electromagnetic fields [2] was 
published. In this recommendation, the Council adopted the 
limit values of ICNIRP’s guidelines after their ratification 
from the Scientific Steering Committee of the European 
Committee. In 2004, the Directive of the European 
Parliament and Council [3] was published, in which the limit 
values of ICNIRP for the occupational exposure were 
adopted, whereas the World Health Organization in 2007 
has concluded a review of the health implications of 
extremely low frequency (ELF) fields [4]. 

In numerous papers, magnetic fields in the vicinity of 
power facilities have been extensively surveyed in recent 
years. Underground cables are one of the major sources of 
magnetic field. Managing magnetic field levels in the space 
surrounding the cables [5 – 17] is connected with studies 
which involve the evaluation of the magnetic field intensity.  
In order to predict the worst case field exposure theoretical 
models need to be developed which will be based on 
analytical or numerical methods [18 – 26]. 

If the magnitude and phase angles of the currents in the 
cable system are known, a simple application of Ampere’s 
circuital law, will give the value of the 2D magnetic field in 
the vicinity of a transmission cable. The usual procedure is 
to assume that some positive sequence currents are flowing 
in the cable circuit under analysis and then calculate any 
current that may be induced in the cable/sheaths for a 
multipoint grounded cable system. In order to determine the 
magnetic flux density B, due to currents flowing in these 
cables, the following assumptions were usually made: the 
earth has no effect on the magnetic field produced by the 
cable (i.e. r = 1), the total magnetic field at any point is 
determined by linear superposition of the magnetic field 
produced by the currents flowing in each individual 
conductor, the effect of induced shield/sheath currents on 
the magnetic field is negligible, each cable is considered to 

be infinitely long and straight, and the currents induced in 
the earth can be neglected. 

However, many cable structures (e.g. underground 
cables used in residential distribution systems) have 
complex geometries for which the magnetic field in the 
volume around these structures cannot be assessed using 
the 2D approach. For this type of structures it is necessary 
to define a 3D model of the geometry and calculate the 
magnetic field distribution in the cable surrounding by use of 
the freely available software [21]. 

The objective of the paper is to present a method (as an 
alternative to the numerical approach) for calculation of the 
3D magnetic fields generated by underground cable of 
complex geometry. It is assumed that the lay-out of the 
underground cable is much more similar to a broken line 
than to a straight line. Furthermore it is supposed, that the 
currents induced in the earth can be neglected, so the 
magnetic field can be obtained using the Biot-Savart law 
and the superposition principle. In the paper analytical 
formulas for calculating the 3D magnetic field with respect 
to a convenient and unique reference system are derived. 
The formulas can be used by a software tool to model the 
magnetic fields generated by the cables.  
 
Calculation of magnetic field generated by 
underground cables 

Consider the arbitrary configuration of the underground 
cable, as shown in Figure1. 
 
 
 
 
 
 
 
 
 
Fig.1. Underground cable with complex geometry 

 
The magnetic field in the observation point P(x,y,z) 

produced by a current path c as in Figure 2 can be 
computed using the Biot-Savart law: 
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where I is a phasor current, the vector element dl  
coincides with the direction of the current I, 1r is a unit 

vector in the direction of the vector r , r is the distance 
between the source point Ps(X,Y,Z) and the observation 
point P(x,y,z) and 0 is the magnetic permeability of the 
vacuum. 
 
 
 
 
 
 
 
 
 
 
Fig.2. Current path generating the magnetic field 
 

For calculation purposes, the current path is divided into 
small straight-line segments. For simplicity consider only 
the i-th segment of the current path. It is convenient to 
define two different Cartesian reference systems: the first 
one x, y, z is a reference system (external reference 
system), the second one x´, y´, z´ is referred to the i-th 
segment, Figure 3. It should be noted, that the reference 
coordinate system can be arbitrary located in the space, it is 
however reasonable to locate the xy plane on the earth 
surface. 
 
 
 
 
 
 
 
 
 
Fig.3. Reference systems and the i-th segment of the current path 

 
The terminating points of the i-th segment have in the 

external (unprimed) reference system the coordinates 
(xi,yi,zi) and (xi+1,yi+1,zi+1) respectively. The segment lies in 
the y’z’ plane of the second (primed) coordinate system, so 
that x’=0 and z’=z. The segment can be generally described 
by the straight-line equation in the "slope-intercept" form 
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Now we express (2) in parametric form with respect to 
the parameter u (progressive along the i-th segment) 
indicated on Figure 3 
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To obtain (5) in the reference coordinates system, the 
roto-translation formulas in the tridimensional space [27] 
should be applied. Thus: 
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where the coefficients i and i (direction cosines) are 
described as: 
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From (7) and (5) it follows that 
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In order to apply the formula (1), we have to find suitable 

expressions 1r(u) and )u(dl . By looking at Figure 2., if 

(X(u), Y(u), Z(u)) are the coordinates of the generic 

element )u(dl , we have 
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and taking into account (10) 
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Remembering that 
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and inserting (11), (12) and (13) into (1) we obtain the three 
components of the magnetic flux density field 
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The integrals in formulas (14) – (16) have to be solved 
numerically. 

Taking into account, that the magnetic field can be 
produced by more conductors in complex configuration, the 
total magnetic field can be obtained by superposition of the 

contributions produced by each segment. If Nc denotes the 
number of conductors and Ns is a number of segments 
considered, from equations (14) – (16) we have: 
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Finally, the modulus of the magnetic flux density field 
can be obtained from the formula: 
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It should be noted, that the above considerations are 
valid for segments, which are not parallel to the 0z axis. 

Consider the case shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Reference systems and the i-th segment of the current path 
parallel to the 0z axis 
 

Let us denote again (X(u), Y(u), Z(u)) the coordinates of 

the generic element )u(dl , where the parameter u 

(progressive along the i-th segment) is indicated on Figure 
4. In the primed coordinate system one can write 
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where Li denotes the length of the segment considered and 
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Regarding the translation of the coordinates we obtain: 
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In order to apply the formula (1), we have to find suitable 

expressions 1r(u) and )u(dl . By looking at Figure 2 and 

taking into account that (X(u), Y(u), Z(u)) are the coordinates 

of the generic element )u(dl , we have 
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Remembering the formula (13) and inserting (24) and 
(25) into (1) we obtain the two components of the magnetic 
flux density field: 
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If Nc denotes the number of conductors and Nsv is a 
number of vertical segments considered, from equations 
(26) and (27) we have: 
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It should be noticed, that if the current I flows opposite 
to the 0z axis 
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and the components of the magnetic flux density field 
change their signs. 

The resultant modulus of the magnetic flux density field 
produced by arbitrary geometrical configuration of current 
carrying underground conductors can be obtained using the 
formula (20). 
 
Example 
 Consider the underground 3-phase cable line 3xYAKXS 
1x35 mm2 0,6/1 kV buried at depth 0,7 m in flat 
configuration; the distance between the cables is 70 mm. 
The route of the cable line is shown in Figure 5. Each cable 
of the line is divided into 5 straight-line segments. The 
terminating points of the segments e.g. of the middle cable 
are:  P1(-10; 5; 0), P2(-10; 5; 0,7), P3(0; 5; 0,7), P4(0; -5; 
0,7), P5(10; -5; 0,7) and P6(10; -5; 0). It is assumed that the 
currents in the particular cable are: I1=164exp(0) A, 
I2=164exp(-j120º) A, I3=164exp(j120º) A and the earth 
permeability is 0. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Route of underground cable line with complex geometry 
 

 In Figure 5 the 3-dimensional magnetic flux density 
distribution is ploted using the MatLab. The calculations are 
curried out for the plane located 1 m above the earth 
surface. 
Final remarks 

The formulas derived allows to manage cases with any 
complex geometry of the cable such as changes of direction 
of a cable line, changes of burial depth of the line and 
crossing between two cable lines as well. They can be used 
in practical cases, when there are often several cables 
nearby, and the fields interact with each other. The 
necessary data for magnetic field calculations are: the 
number of conductors, the current in each conductor of the 
cable lines, the x, y, z coordinates of the observation point P, 
the number of segments the cable is divided into, and the 

coordinates (xi,yi,zi) and (xi+1,yi+1,zi+1) of terminating points of 
each segment. It should be noted that all coordinates refer 
to the reference system, which can be arbitrary located in 
the space. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Module of the magnetic flux density 
 

The method assumes that the cable segment is 
described by the straight-line equation in the "slope-
intercept"  form, effects of earth currents onto magnetic field 
are negligible and that  power-line currents have prescribed 
values. The formulas obtained in the paper require 
numerical integration which can be performed by the use of 
freely available tools. 

It should be pointed out, that the capability of the 
method developed is greater then other analytical methods 
presented in the literature and the direct analytical approach 
used, as opposed to the commercialized 3D simulators, 
enables any physical interpretation of the phenomena being 
simulated.  
 

REFERENCES 
[1] International Commission on Non-Ionizing Radiation Protection 

(1998) Guidelines for limiting exposure to time-varying electric, 
magnetic and electromagnetic fields (up to 300 GHz), Health 
Phys, 74 (4), 494–522  

[2] European Union Council (1999) Recommendation of 12 July 
1999 on the limitation of exposure of the general public to 
electromagnetic fields (0 Hz–300 GHz). (1999/519/EC)  

[3] European Parliament and Council (2004) Directive 2004/40/EC 
of 29 April 2004 on the minimum health and safety 
requirements regarding the exposure of workers to the risks 
arising from physical agents (electromagnetic fields)  

[4] World Health Organization (2007) Electromagnetic fields and 
public health: exposure to extremely low frequency fields. Fact 
Sheet No. 322 

[5] Farag A., Dawoud M., Habiballah I., Implementation of 
shielding principles for magnetic field management of power 
cables, Electric Power Syst. Res. , Vol. 48 (1999), 193–209 

[6] Barbarics T., Kost A., Lederer D., Kis P., Electromagnetic field 
calculation for magnetic shielding with ferromagnetic material, 
IEEE Trans. Magn. , Vol. 36, No. 4 (2000), 986–989 

[7] Bascom E.-C., Banker W., Boggs S. A., Magnetic field 
management considerations for underground cable duct banks, 
IEEE Transmission & Distribution Conference, (2006), 414-420  

[8] D’Amore M., Menghi E., Sarto M., Shielding techniques of the 
low-frequency magnetic field from cable power lines, in Proc. 
IEEE Int. Symp. Electromagn. Compatibil., Vol. 1 (2003), 203–
208. 

[9] CIGRE, Work Group on Electric Power Systems, WG C4.204, 
“Mitigation techniques of power-frequency magnetic fields,” 
Electra, Vol. 242 (Feb. 2009), 75–83 

[10] Mimos E., Tsanakas D., Tzinevrakis A., Optimum phase 
configurations for the minimization of the magnetic fields of 
underground cables, Electr. Eng. , Vol. 91 (2010), 327–335 

[11] Almeida M. E., Machado V. M., Neves M. G., Mitigation of the 
magnetic field due to underground power cables using an 
optimized grid, Eur. Trans. Electr. Power, Vol. 21 (2011), 180–
187 



114                                                                               PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 7/2015 

[12] Sergeant P., Koroglu S., Electromagnetic losses in magnetic 
shields for buried high voltage cables, Progress In 
Electromagnetics Research, Vol. 115 (2011), 441-460 

[13] Del Pino J.-C., Cruz P., Influence of different types of magnetic 
shields on the thermal behaviour and ampacity of underground 
power cables, IEEE Trans. on Power Delivery, Vol. 26, No. 4 
(2011), 2659-2667  

[14] Boyvat M., Hafner C., Molding the flow of magnetic field with 
metamaterials: Magnetic field shielding, Progress In 
Electromagnetics Research, Vol. 126 (2012), 303-316. 

[15] Machado V. M., Magnetic Field Mitigation Shielding of 
Underground Power Cables, IEEE Trans. on Magnetics, Vol. 
48, No. 2 (February 2012), 707- 713. 

[16] Del Pino J. C., Cruz P., Serrano-Iribarnegaray L., Impact of 
electromagnetic losses in closed two-component magnetic 
shields on the ampacity of underground power cables, 
Progress In Electromagnetics Research, Vol. 135 (2013), 601-
625 

[17] Del Pino-Lopez J. C., Cruz-Romero P., Magnetic field shielding 
of underground cable duct banks, Progress In 
Electromagnetics Research, Vol. 138 (2013), 1-19 

[18] Karady G. G., Nunez C. V., Raghavan R., The feasibility of 
magnetic field reduction by phase relationship optimization in 
cable systems, IEEE Trans. on Power Delivery, Vol. 13, No. 2 
(1998) 

[19] Habiballah I. O., Farag A. S., Dawoud M. M., Firoz A., 
Underground cable magnetic field simulation and management 
using new design configurations, Electric Power Systems 
Research, 45 (1998), 141 – 148 

[20] Dawoud M. M., Habiballah I. O., Farag A. S., Fironz A., 
Magnetic field management techniques in transmission 
underground cables, Electric Power Systems Research, Vol. 48 
(1999), 117-192 

[21] Bourdages M., Gravel S., Calculation in 3D of the magnetic 
fields generated by distribution networks, CIRED 20th 
International Conference on Electricity Distribution Prague, (8-
11 June 2009), Paper 1008 

[22] Holbert K. E., Karady G. G., Adhikari S. G., Dyer M. L., 
Magnetic fields produced by underground residential 
distribution system, IEEE Trans. Power Del., Vol. 24, No. 3 
(July 2009), 1616-1622   

[23] Machado V. M., Almeida M. E., Neves M. G., Accurate 
magnetic field evaluation due to underground power cables, 
Eur. Trans. Electr. Power, Vol. 19, No. 8 (2009), 1153–1160 

[24] Machado V. M., FEM/BEM hybrid method for magnetic field 
evaluation due to underground power cables, IEEE Trans. 
Magn., Vol. 46, No. 8 (2010), 2876–2879 

[25] Mimos E.I., Tsanakas D.K., Tzinevrakis A.E., Optimum phase 
configurations for the minimization of the magnetic fields of 
underground cables, Electr. Eng. 91 (2010), 327–335 

[26] Abu Zarim Z. A., Anthony T. M., Magnetic field 
simulation&measurement of underground cable system inside 
duct bank, CIRED 22nd International Conference on Electricity 
Distribution Stockholm, (10-13 June 2013), Paper 1089 

[27] http://mathworld.wolfram.com/DirectionCosine.html, 
14.12.2014, 15.50. 

 
 
Authors: prof. dr hab. inż. Wojciech Machczyński, Politechnika 
Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, ul. 
Piotrowo 3a, 60-965 Poznań, E-mail: 
Wojciech.Machczynski@put.poznan.pl; dr inż. Krzysztof Budnik, 
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki 
Przemysłowej, ul. Piotrowo 3a, 60-965 Poznań, E-mail: 
Krzysztof.Budnik@put.poznan.pl. 

 


