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Abstract. Doppler radar tomography is a method of creation of a target image from Doppler profiles of a rotating target. Electromagnetic 
backscattering from rotating objects generates time-varying Doppler spectra which can be a base of tomographic projections in the time-frequency 
approach. In this paper the influence of projections and significant radar system parameters on the final image resolution is considered. The results 
of simulations of the proposed imaging method are also presented. 
 
Streszczenie. Dopplerowska tomografia radarowa jest metodą formowania obrazów obracających się obiektów radarowych z profili 
Dopplerowskich. Rozpraszanie fali elektromagnetycznej przez rotujacy obiekt powoduje powstanie czasowo zmiennych charakterystyk 
częstotliwościowych, które są bazą rzutów tomograficznych w podejściu czas-częstotliwość. Rozważono wpływ jakości rzutów tomograficznych oraz 
istotnych dla zobrazowania parametrów systemu radarowego na rozdzielczość tworzonego obrazu. Przedstawiono również rezultaty symulacji. 
Wpływ parametrów radaru na rozdzielczość obrazu Dopplerowskiej Tomografii Radarowej 
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Introduction 

Electromagnetic (EM) backscattering from moving 
objects is subjected to different modulations of Doppler 
spectra [2, 3]. These characteristics of the spectra carry on 
a lot of useful information about the object used in many 
areas, such as missile defence, space security, target 
recognition, and so on. Imaging of moving targets using 
radar has been a major challenge. The imaging methods 
depend on signals which are used. The well known imaging 
methods Synthetic Aperture Radar (SAR) and Inverse 
Synthetic Aperture Radar (ISAR) mainly use wideband 
waveforms. The wideband imaging approach is sensitive to 
translational motions, which may distort the image seriously 
[2, 3, 4]. On the other hand narrow-band radar with a small 
signal bandwidth insures high system sensitivity, and its 
maximum detectable distance is larger than that of wide-
band radar for a constant minimum detectable signal-to 
noise ratio. In this paper only a narrow-band signal in a 
Doppler radar tomography of a rotating one-point object 
about the center of rotation with constant angular velocity is 
addressed. It is assumed that translational motions have 
been previously removed. 

The work demonstrates the reassigned spectrograms as 
projections used in the back projection algorithm for 
improving image resolution [5, 6]. An important factor of the 
image quality is its resolution. Radar range resolution 
defines the ability of resolving two point-targets within the 
same antenna beam close together in the range domain. 
Doppler resolution is the ability of resolving two targets in 
the radial velocity. The Doppler resolution fD is connected 
to the observation time T of a signal. The finite coherent 
processing interval (CPI) required to formulate a 
tomographic projection introduces a finite frequency spread 
for each point scatterer. The longer the CPI, the finer the 
Doppler filter width would become, but the smearing due to 
cross-range motion appears. The analysis of image 
resolution also requires the analysis of the sampling rate of 
the radar system. The sampling rate (or pulse repetition 
frequency (PRF) in narrow-band pulse Doppler radars 
which collects only one sample per transmitted pulse) 
needs to be sufficient to cover the entire Doppler frequency 
extent of the target. Selected aspects connected with an 
image resolution in Doppler radar tomography will be 
considered in detail. Finally, simulation results demonstrate 
the correctness of the theoretic analysis of the presented 
method. 

Range-Doppler Imaging of a rotating Target 
A rotating target might be positioned on a turntable, or it 

might be an airborne target. Herein it is assumed that an 
object is a one-point target, where only the rotational motion 
is considered. A model of a rotating object is shown in the 
figure 1, where a Cartesian coordinate system is defined. 
The target center is set to be the origin. The line of sight 
(LOS) angle is assumed to be constant. The rotating speed 
is denoted by . A rotating object causes Doppler shifts in 
radar returns. 
 

 

 
Fig. 1. The geometry for locating a rotating point target 
 
The origin of coordinates coincides with the centre of the 
rotation. It is also assumed that this centre of rotation is a 
large distance R from the antenna. Because the range R is 
large it means that all the horizontal points are 
(approximately) at the same range from radar.  

In classical radar imaging the image of the object is 
created in a Doppler-range plane [7]. In this plane a range 
and Doppler shifts of objects can be estimated A radar 
system can measure the range R + y and the range rate 

 xR  . In particular, the radar measures the time delay  
and the Doppler shift fD. It means that localisation of the 
object in a new imaging plane (X, Y) with coordinates 
Cartesian (x, y) called range and cross-range respectively, 
can be determined as 
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An important factor of the image quality is its resolution. The 
imaging defined by the equation (1) is based on 
measurements of fD. and . Because the delay-time  of a 
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signal returned from an object is related to the range R, the 
resolution in range is directly related to the resolution in 
delay-time and is a function of the bandwidth B of the 
transmitted signal. The Doppler resolution fD is connected 
to the coherent integration time T.  
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Doppler resolution is connected with the cross-range 
resolution. The cross-range resolution rcr is determined by 
the angle extent of aperture during the coherent integration 
time 
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where f0 is the frequency of the transmitted signal and  is a 
rotation rate of the object. Cross-range resolution is 
proportional to the Doppler resolution with a scaling factor. 
 
Doppler Radar Tomography 

Another method of radar imaging is imaging according 
to principles of tomography originated from X-ray 
tomography in diagnostic medicine, where an image is built 
from 1D projections [1, 2, 3]. In radar tomography, 
projections are developed from range profiles or Doppler 
profiles (cross range profiles). For radars of high bandwidth, 
mainly range profiles are used. For narrow-band radars, the 
range profiles are necessarily cross-range profiles which 
can be obtained through coherent Doppler processing. The 
backscatter from an object generates Doppler shift of the 
scatterer giving time-varying frequency characteristics, from 
which projections are created used in Doppler radar 
tomographic imaging. 

A number of time-frequency distribution techniques have 
been proposed for analysing time-varying spectrum to 
obtain high frequency and time resolutions simultaneously. 
The STFT (Short Time Fourier Transform) has been applied 
due to its simplicity and linearity. The resolution of a 
tomographic image depends on the resolution of the input 
projections. A reassigned spectrogram is assumed as 
cross-range projections in Doppler radar tomography, which 
shows better resolution than a classical spectrogram [8]. 
The spectrogram SP(f, tk) is the squared modulus of the 
STFT. We can interpret the spectrogram as a measure of 
the energy of the signal in the time-frequency domain 
centered on the point (t, f). 
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where h(t) is an analysis window for the STFT, which 
controls the resolution of this transformation. 
The reassignment method moves each value of the 
spectrogram computed at any point (t, f) to another point 

)ˆ,ˆ( ft , which is the centre of gravity of the signal energy 

distribution around (t, f) 
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A reassigned spectrogram is the time-frequency 
transformation whose value at any point (t’, f’) is the sum of 
all the spectrogram values reassigned to this point. 

 
Requirements for sampling rate and coherent 
processing interval 

The achievable resolution of an image in Doppler radar 
tomography depends on several factors. These factors 
include the finite sampling rate (pulse repetition frequency 
(PRF)) of the radar system, the coherent processing interval 
(CPI) used for  projection, as well as the rotation rate  and 
the cross-range dimension of the object. Some limitations 
result from the fundamental limit due to available bandwidth 
expressed by the point spread function (PSF). The analysis 
of the resolution resulting from the PSF function is omitted 
in this paper. The imaging resolution also depends on the 
resolution of the projections used in tomographic 
processing. 

The sampling rate (or pulse repetition frequency (PRF)) 
in narrow-band pulse Doppler radars collects only one 
sample per transmitted pulse and has to be sufficient to 
cover the entire Doppler frequency extent of the target. 
Sampling rate without aliasing (or pulse repetition frequency 
PRF) has to fulfil the assumption of the Nyquist–Shannon 
sampling theorem. This criterion imposes the inequality 
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where Rmax is a maximal rotation radius of a scatterer on the 
object,  is a length of a transmitted wave, and  is the 
rotation rate. 

In Doppler radar tomography based on the Fourier 
transform the length of a coherent processing interval (CPI) 
is limited by the rotational motion of a point scatterer on the 
object. Too long CPI causes that Doppler spread will be 
larger than one Doppler frequency filter width and Doppler 
spectrum will occupy more than one cross-range bin. This 
phenomenon is called ‘walk-off’. Imaging with too long CPI 
results in a blurred image. Cross range is given by 
x = rcos, hence the differential change in direction x is 
given by dx = -rsindt. Maximum cross-range walk 
appears when  is odd n/2. If dt represents a CPI time, 
denoted by TCPI, then the requirement for no cross-range 
walk-off during a CPI translates to the relation 

CPITrdx   [1]. TCPI can be represented by the number 

of samples Ns used in the STFT algorithm 
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Fulfilment of inequalities (6) and (7) guarantees that 
smear-free projection can be achieved. The cross-range 
resolution limit for methods based on the STFT transform is 
given by 
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Comparing (3) and (8) it is clearly seen that the resolution in 
imaging improves in methods based on Fourier transform. 
 
Model of radar returns 

For narrow-band radar, echoes of the k-th scatterer in 
the slow time domain after frequencies mixing satisfy 
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where tk is the slow time, σ is the backscattering coefficient 
and R(tk) denotes the instantaneous distance between the 
scatterer and the radar [3]. 

The equation (9) shows that the received signal 
characterises a time-varying phase in sinusoidal manner. 
The amplitude and the phase depend on the relative 
position of that scatterer with regard to the radar. The 
synthetic signal derived in equation (9) is used to generate 
projections.  

 
Results of numerical experiments 

In the experiment the scatterer is located in (20, 20) in 
the (X, Y) plane. The reassigned spectrogram and the 
filtered back-projection method are proposed to estimate 
the scatterer position. According to the simplification in (6) 
the following values are taken in experiments: 
 = 0.0028 Hz, PRF = 1 Hz,  = 4 m, 360 samples of the 
phase are available for one cycle of a rotation in 360 s. TCPI 
for smear-free projections is less than 180 s. Those values 
result from equations (6), (7) and (9) and are taken for 
simulations simplicity. The use of real life parameters 
requires scaling of proper equations of the imaging 
algorithm. The filtered back projection is calculated 
according to the formula (10) for obtaining a spatial position 
of a scatterer q(x, y) in the plane (X, Y). 
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where the term )( rfP  stands for the spatial Fourier 

transform of the projection in polar coordinates. The 
subscript (x cos + y sin) means that the inverse Fourier 
transform, denoted by (F-1) is calculated for this subscript. 
The Cartesian coordinate system is put in the middle of the 
matrix. The point (200, 200) in the matrix is located exactly 
in (20, 20) point in the coordinate system (X, Y). 

The resolution of a tomographic image depends on the 
resolution of the input projections. In this paper projections 
are calculated as reassigned spectrograms. For comparison 
task the classical spectrogram in the figure 2 and the 
reassigned spectrogram in the figure 3 are presented.  

 

Fig. 2. Spectrogram with the 61-sample window as tomographic 
projections with bad resolution but satisfies yet the condition of 
smear-free projections 
 

The much better resolution of projections for the 
reassigned spectrogram what can be seen in the figure 3. 

The reassigned spectrogram and the classical 
spectrogram are used as tomographic projections in 
tomographic imaging. The tomographic processing of 
reassigned spectrogram via the filtered back projection 
shown in the figure 4 gives the image of the object with 
much better resolution comparing with the image from the 
spectrogram show in the figure 5. 

 

 

Fig. 3. Reassigned spectrogram with the 61-sample window with 
excellent resolution with condition of smear-free projections 
 

 

Fig. 4. Tomographic zoomed image from the reassigned 
spectrogram with the 61-sample window with  proper location of the 
object in (200, 200) point 

 

 

Fig. 5. Tomographic zoomed image from the spectrogram with the 
61-sample window 
 

 

Fig. 6. Tomographic zoomed image from the reassigned 
spectrogram with the 215-sample window without condition of 
smear-free projections  
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Fig. 7. Tomographic zoomed image from the spectrogram with the 
215-sample window without condition of smear-free projections  
 

The figures 4 and 5 show images from smear-free 
projections, where the condition for free-smear projections 
is given in equation (7).  

Next experiments are performed with the higher number 
of samples Ns than the limit results from the equation (7). It 
is obvious that the too big number of samples used in 
projections gives the smeared projections and consistently 
smeared images. 

Again, low resolution of the projection based on the 
STFT gives the large spread of the tomographic image 
comparing with the imaging based on the reassigned 
spectrogram. Some conclusion can be drawn analysing 
results of these experiments. Imaging based on the 
reassigned spectrogram is less sensitive to exceed the CPI 
parameter.  
 
Conclusions 

In this paper the imaging approach with the Doppler-
processed cross-range profiles as projections represented 
by the spectrogram and the reassigned spectrogram in the 
tomographic processing is considered. A lot of factors 
determine the achievable resolution of the image. The 
length of the CPI and the value of the PRF have been found 

as very important in the imaging process to achieve a high 
resolution of an image. The limitations of these parameters 
have been showed. If the projections are ‘cleaner’ and 
‘sharper’, resulting tomographic images with better 
resolution will be obtained. The reassigned spectrogram 
turned out to be better than the classical spectrogram. 
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