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Abstract. A combined simultaneous calculation method for electrical contacts is presented based on a finite element analysis of both the current 
density distribution as well as the heat flow distribution. For an exact prediction of local hotspots special attention is put on the transition conditions at 
the joints where current and heat transfer with defined transfer coefficients takes place and temperature and electrical potential face a discontinuity. 
The conditions for the maximum temperature to be expected at a thermo-electrical contact are derived by an analytical consideration.  
 
Streszczenie. Przedstawiono łączoną metodę obliczeniową dla elektrycznych styków, opartą na analizie metodą elementów skończonych zarówno 
rozkładu gęstości prądu, jak i przepływu ciepła. W celu dokładnego przewidywania lokalnych przegrzań szczególną uwagę zwrócono na warunki 
przejścia na złączach, gdzie następuje przekazywanie prądu i ciepła z określonymi współczynnikami przenikania, a temperatura i elektryczny 
potencjał są nieciągłe. Na drodze analitycznych rozważań wyprowadzono warunki dla maksymalnej temperatury oczekiwanej na termo-elektrycznym 
styku. (Jednoczesne sprzężone obliczanie gęstości prądu i temperatury styku we wzbudniku turbogeneratora z wykorzystaniem MES). 
 
Keywords: thermo-electrical coupling, FEM, contact temperature, temperature and potential discontinuity  
Słowa kluczowe: sprzężenie cieplno-elektryczne, MES, temperatura kontaktowa, temperaturowa i potencjalna nieciągłość. 
 
 
Introduction 
 Manufacturers of electrical machines are obliged to 
keep temperature limits for insulation materials as well as 
for electrical joints. The temperature at a screwed silver 
plated contact surface e.g. may not exceed 115 °C [1]. 
 In the case presented a special service modified axial 
lead connection of an exciter and a generator rotor has to 
be investigated. The problem is that a newly build generator 
rotor and a new exciter rotor have to be coupled together as 
well as with either old counterpart. As a proposed solution 
the old conical threads in the old exciter rotor would be 
machined off and replaced by a cylindrical thread, in which 
an interface bushing is screwed for connection with the new 
form cylindrical bolts. The inner surface of the interface 
bushing electrically connects to the bolt via three lamella 
belts. Fig. 1 shows a view on the exciter coupling.  
 For this arrangement the question has to be answered 
whether the additional contact surface in close vicinity to the 
central insulation layer is thermally admissible or causes too 
much heat together with the contact lamella belts.  
 A simultaneous electrical and thermal FEM calculation is 
carried out to identify and localize existing hot spots since 
the electrical current density distribution directly influences 
the temperature distribution via the losses.  
 
Description of the model 

The conductive path consists of three parts in electrical 
and thermal coupling. One is the axial lead itself, which in 
the electrical model is domain Ve,3. The other is the adapter 
threaded bushing, domain Ve,2. In this the third part – a 
cylindrical bolt – is inserted, domain Ve,1.  

As shown in Fig. 2 there are four areal electrical con-
tacts in the model. One is the outer thread of the interface 
bushing in contact to the axial lead, boundary Ae2,3. The 
others are the three contact lamella belts, boundary Ae1,2.  
 

 
 

Fig.1. View on axial lead and exciter coupling.  
   

 The thermal model also consists of three domains with 
only slight differences to the electrical one: Domain Vth,3 in 
addition to the axial lead includes the insulation layers, the 
shaft and the coupling flange, whereas Vth,2 and Vth,1 are 
identical to their electrical pendants. The transition area 
Ath,1,2 includes the three lamella belts as well as the spaces 
between them, where in contrast to electrical current heat 
transfer is given by conduction through a thin air layer and 
radiation. Ath,2,3 is identical to Ae,2,3. 
 Owing to symmetry only a quarter of the arrangement 
has to be modelled including half of the central insulation 
wall between the positive and the negative lead.  

 

Governing equations  
 GetDP [2] is used for the treatment of the problem. The 
electric potential  in case of dc-current density distributions 
in bulks with conductivity  is given in its weak formulation 
with the associated potential test function : 
 

(1) 0dgraddgradgrad  
VV

anV


  
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From the ohmic losses a volumetric loss density pV 
results given by the conductivity and the current density J: 
 

(2)  2
2

V grad



J

p   

 Eqn. (1) and (2) are set up and evaluated for the three 
domains separately. The boundary integrals are used to 
incorporate the transition conditions as well as the current 
boundary condition on the front face of the cylindrical bolt. 
 Eqn. (2) is besides the temperature boundary conditions 
the excitation of the thermal problem which is analogous to 
the electrical one: 
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Fig.2. Schematic representation of model with domains, transition 
areas and external boundary conditions.  
 

Here,  denotes the temperature and  the thermal 
conductivity. isthe corresponding test function. This 
equation is also set up separately for the three thermal 
domains.  
 For the three coupled domains six different function 
spaces are defined, one for the electrical potential and one 
for the temperature in each domain. By the definition of 
different function spaces for each domain the geometrically 
identical nodes on the surfaces in contact can take two 
different values of and like in [3] for  .  
 The transfer conditions given by          
 

(4)  21An,2n,1 grad   gnJJ


  
 

for electrical joints and  
 

(5)  21n,2n,1 grad   nqq
   

 

for heat transfer are incorporated into the weak formulation 
by the surface integrals in (1) and (3). Here, gA  denotes the 
surface transfer conductivity in S/m2 and the heat transfer 
coefficient in W/(m2K). The relation between a given contact 
resistance RC and the surface transfer conductivity gA is 
given by the contact area AC as follows assuming a uniform 
distribution of gA: 
 

(6) 
CA

C
1
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R


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 The additional heat generated in electrical contacts is 
described by a surface loss density pA in the contact area.  
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This loss density symmetrically distributes to the two 
adjacent domains and is incorporated in (3) by a surface 
integral.  
 Arranging all equations in one overall weak formulation 
with the coupled domains and function spaces the thermal 
problem can be described by (9), on which Galerkin’s 
method for discretization is applied. The expressions in (9) 
arise from Poisson’s equations for the temperature fields 
including the Joule heat entries in the domains as well as 
the contact areas and the coupling terms.  
 A similar formulation can be established for the electrical 
problem, which has to be solved in advance in order to 
obtain the potential distributions 1…3 from which the loss 
densities are calculated in (9). However, as a difference to 
the thermal problem the function space in domain Ve,1 has to 
be constrained in a way that the condition 

 

(8)  
bolt,in

dgrad 11
A

anI


  

 

for a given current I1 with a floating potential U1 on the right 
hand side input surface of the bolt in Fig. 2 can be fulfilled.  
 An iterative adaption of the electrical conductivity depen-
ding on the temperature is possible in principle but is not 
applied here. Instead, constant values not depending on the 
temperature are taken.  
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Analytical considerations on a thin layer model  
 The situation in an electro-thermal contact can be ana-
lysed using a simple three layer model as shown in Fig. 3. 
The boundary conditions on the intermediate layer are 
given by a left hand side temperature value l and a right 
hand side value r. The intermediate layer with a thickness 
d and a thermal conductivity  is also affected by a 
volumetric loss density pV. The heat transfer coefficient is 
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given by  =  / d and the relation between volumetric loss 
density and the surface loss density is pA = pVd.  
 For the intermediate layer the thermal version of 
Poisson’s equation has to be solved for the one-dimen-
sional case as shown in (10) and (11).  
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The constants C0 and C1 are given by the boundary 
conditions as follows:  

 

 
   
 

Fig.3. Intermediate layer model for electro-thermal contact 
situation. 
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The constants are given by the average temperature 
decline and the average temperature as shown in (14): 
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Thus, the final solution including the assumed boundary 
temperatures is:  
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The temperature gradient inside the intermediate layer is: 
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From this, the heat flow densities on the left hand side and 
on the right hand side can be calculated by taking (16) at    
±d/2 and multiplication with the thermal conductivity:  
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The results (17) and (18) clearly show that the resultant 
heat flow densities consist of the internally generated 
contribution which is symmetrically distributed on both 
boundaries and the heat transfer component given by the 
temperature difference and the heat transfer coefficient. 
This is just the way thin layers are incorporated in (9) as 
contact surfaces.   
 Another crucial point which is the maximum temperature 
in a contact can also be answered by the thin layer model:  
 If the zero crossing of (16) lies within the interval [-d/2, 
d/2] then the maximum temperature is given in the contact 
layer.  

 (19)   0V 
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The condition results in a dependence of the 
temperature difference on the surface loss density and the 
heat transfer coefficient shown in (20) and (21). 
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If (21) holds, the maximum temperature can be 
calculated by inserting the result from (20) in (15):  
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Otherwise the maximum temperature is either l or r.  
 For a junction 1, 2 this finally results in the following 
cases, where the surface loss density is expressed by the 
electric potential difference and the contact transfer conduc-
tivity: 
 (23)  
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Chosen parameters of the model  
 Crucial parameters of the model are the heat transfer 
coefficients, the surface current transfer conductivities as 
well as the volumetric conductivities for heat flow and 
electric current.  
 The thermal conductivity of the insulation materials is 
iso = 0.25 W/(mK). For the metallic structures of the current 
path cond = 250 W/(mK) is estimated. The alloys are some-
what different from pure copper. That is also the reason, 
why the electrical conductivities of bolt, bushing and axial 
lead differ from copper: bolt = 45 MS/m, bush = 43 MS/m 
andlead = 50 MS/m. The thermal conductivity of the shaft 
steel is shaft = 36 W/(mK). 
 Special attention has to be paid to the surface modelling 
of the contact lamella belts and the outer bushing thread. 
For one lamella belt a voltage drop of 20 mV is given by the 
manufacturer. Assuming this voltage drop occurs at 
maximum admissible current of 1764 A one can calculate a 
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resistance of Rbelt = 20 mV / 1764 A = 11.338  or 
conductance Gbelt = 1/ Rbelt ≈ 88.2 kS. Distributed on a 
cylindrical ring with 50 mm diameter and 10 mm width this 
results in  
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 For the heat transfer condition in the lamella belt the 
thermal conductance of a single lamella can be estimated 
by consideration of the heat path through the lamella. With 
a length of the heat path of l = 10 mm, a width of 
0.4 mm·2· = 2.513 mm, a thickness of 0.2 mm and a 
thermal conductivity of 150 W/(mK) for one half of a lamella 
the following thermal conductance results:  
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For a full lamella this value doubles. With 63 lamellae on 
the perimeter the total thermal conductance becomes 
0.95 W/K. Distributed on the cylindrical surface of the whole 
belt, an equivalent heat transfer coefficient of  
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can be calculated.  
 This is only the contribution of the belt itself. An 
additional term arises from the conductance of a thin layer 
air surrounded by the lamellae: 
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Together with a 12 W/(m2K) contribution from radiation a 
total equivalent heat transfer coefficient of 650 W/(m2K) is 
set for the lamella belts. For the vis-à-vis-surfaces of the 
bolt and the inner bore of the bushing not in electrical 
contact from conduction through a thin layer of air and 
radiation a heat transfer coefficient of 534 W/(m2K) is 
obtained.  
 The contact resistance of the outer thread of the 
bushing is assumed to be 4  from experience. With (6) 
an equivalent surface transfer conductivity gA,thread of 
0.25 MS / (0.095·2·0.034 m2) ≈ 12.32 MS/m2 is obtained.  
For the heat transfer coefficient, thread = 900 W/(m2K) is 
estimated, which would be equivalent to a 29 m air layer. 
Owing to the direct contact, the transfer conditions are 
probably better.  
 The electric current imposed to the model is half the 
exciter current, 3250/2 A.  
 
Results  
 An example for a resulting temperature distribution is 
given in Fig. 4 showing a hot spot on the outer thread close 
to the central insulation layer of the axial lead. The 
maximum temperatures are calculated according to (23). 
However, allowable temperature limits according to [1] are 
not exceeded. The temperature variation inside the metallic 
structures is nearly negligible. This is due to the high 
thermal conductivity. Despite the low distance of the 
threaded bushing to the central insulation wall there is no 
danger of overheating of any insulation material or contact 
surfaces.  
 Fig. 5 shows the contact current density distribution for 
the three lamella belts and the outer thread of the bushing. 
The current density is not completely uniform, but there are 
only slight variations on the surfaces. The average values 
which can be calculated from an assumed uniform current 

density transition are Jn,1,2,avg ≈ 0.345 A/mm2 and 
Jn,2,3,avg ≈ 0.0801 A/mm2. A homogenization of the current 
density distributions in the contacts due to the relatively 
high contact resistances can be suspected.  
 An interesting question is how (23) applies on the 
surfaces, i.e. is there an internal contact temperature rise 
due to contact heat or is the contact temperature just the 
maximum of both side temperatures? Fig. 6 is an answer to 
this question as it shows the difference between the maxi-
mum temperature from (23) and the maximum of the two 
side temperatures, i.e.  

 

(28)  21)23(max,2,1max,2,1 ,max    

 

In the contact area 1,2 there is a slight internal 
temperature rise, whereas the maximum temperature in the 
contact area 2,3 is given by the maximum of both boundary 
temperatures which in the given case is 2. 
 Fig. 7 shows the temperature difference at the contact 
surfaces. Interestingly, the lowest temperature drops occur 
at those areas where the temperature itself becomes 
maximum according to Fig. 4 and vice versa. Obviously 
these domains with heat accumulation are also charac-
terized by low heat transfer rates whereas areas far away 
from the hot spots exhibit higher temperature gradients and 
heat transfer rates.  
 In Fig. 8 the contact voltage drops u1,2 and u2,3 are 
depicted. Like in the current density distribution given by 
Fig. 5 there only occur slight inhomogenities. The voltage 
drops only amount to some millivolts, which is far away from 
any values dangerous for the contact integrity as they are 
given by the softening voltage (90 mV) and the melting 
voltage (370 mV) for silver plated contacts [4].  
 

 
 
Fig.4. Temperature distribution on contact surfaces and central 
insulation layer in centigrade. 
 

 
 
Fig.5. Current density distribution on electrical contact surfaces. 
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Fig.6. Contact temperature rise in lamella belts and outer thread.  
 

 
 
Fig.7. Temperature drop over contact surfaces of lamella belts and 
intermediate spaces as well as outer thread. 
 

 
 
Fig.8. Voltage drop over contact surfaces of lamella belts and outer 
thread. 

Conclusion  
A method for the simultaneous computation of a coupled 

electrical and thermal field problem is presented based on 
FEM. The contact discontinuities of the electric potential 
and temperature over surfaces in touch are taken into 
account by definition of different function spaces in adjacent 
domains with a suitable formulation for this type of coupled 
problem.  

The method is applied to a service modified turbine 
generator exciter coupling with bolted and screwed electric 
contacts in series.  

The electrical and thermal results show no critical 
condition of the arrangement. Contact surface as well as 
insulation temperatures are in an acceptable range 
including their hot spot values. The contact voltages are 
even below the softening values. Thus no harm of the 
contact integrity has to be expected. 

The modification of the coupling under investigation is 
released based on these results.  
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