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The procedure of construction of mathematical models for 
nonlinear dynamical systems based on optimization approach 

 
 

Abstract. Using optimization for mathematical models’ construction is a universal approach that can be applied to a wide set of objects. Efficient 
application of this approach to nonlinear dynamical objects requires a combination of methods to be used in order to obtain a good model and to 
reasonably limit the amount of required computations. An overview of such methods with the example of a complex model construction is provided in 
this paper. 
 
Streszczenie. Wykorzystanie optymalizacji w tworzeniu modeli matematycznych obiektów jest szeroko stosowanym podejściem. Aby zapewnić 
wydajną optymalizację nieliniowych obiektów dynamicznych należy wykorzystać techniki upraszczające problem oraz przyspieszające obliczenia. W 
artykule zawarto przegląd takich metod, a następnie użyto ich do tworzenia złożonego modelu. (Procedura tworzenia modeli matematycznych 
nieliniowych obiektów dynamicznych z wykorzystaniem metod optymalizacji). 
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Introduction 

The process of design and analysis of modern 
dynamical systems with large number of components of 
different nature requires significant computation resources. 
It is caused by considerable number of components of the 
system being designed and variety of physical phenomena 
to be taken into account. The usage of macromodels in 
such conditions allows us to significantly reduce the 
required computation efforts because it makes it possible to 
ignore unimportant effects for particular analysis. 
Macromodels can be used to describe single components 
as well as subsystems of significant size including elements 
of different nature. Such state of the problem to be 
considered leads to the necessity to develop universal 
approaches intended for construction of complex dynamical 
object macromodels in the form useful for their further 
analysis. 

In a general case, the dynamical system for which the 
macromodel will be constructed can be represented as a 
multipole as shown schematically in Figure 1. 
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Fig. 1. An object for the macromodel construction 
 

In Figure 1 vector v


 describes input values, vector y


 

contains output values, vector x


 consists of values, 
corresponding to the internal state of the object. The goal of 
the research is to find an operator which will allow 
calculating output values y


 of the object using known input 

values v


 and initial values x


 of internal state of the object. 
One of the most convenient forms of mathematical 

model representation comprises discrete state equations: 
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where DCGF ,,,  are matrices of the model coefficients;   
is some nonlinear vector-function of many arguments; k is a 
discrete index. 

The discrete form of representation is best suited for 
computer calculations because it allows omitting approxi-

mation of input data arrays. The state equations form is also 
convenient for further application of the model as a 
component of a dynamic system containing a greater 
number of elements. 

One of the promising approaches for macromodel 
identification is the use of optimization. The idea of this 
approach is as follows: 

The selected mathematical form of macromodel 
representation is described by a number of unknown 

parameters which we denote as vector 


. For the case of 
discrete state equations (1) this vector includes elements of 
the matrixes DCGF ,,,  and coefficients of the vector-

function  .  
Input information regarding the object can be presented 

as a set of transient characteristics   kiy  caused by input 

disturbances   kiv  where k is a discrete index, i is an index 

of transient characteristic. 
Let us introduce some goal function representing a 

measure of inaccuracy with which our model describes the 
object. Its simplest mathematical representation can take a 
form of the root-mean square deviation: 
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where N is a total number of discrete values representing all 

transient characteristics, 
 k
iy
~  is the object response 

calculated using its model. 
The best possible values of macromodel coefficients 

correspond to such vector *


 for which the goal function 
(2) approaches its minimum Thus, the model coefficients 
determination can be carried out by finding the global 
minimum point of the function (2). 

The proposed approach is suitable for coefficients 
identification if the model is presented in any form described 
by a limited set of coefficients. Also, it does not apply any 
special restriction concerning the input information used for 
the coefficients identification. This makes it possible to use 
the proposed approach effectively as a universal method for 
coefficients identification during dynamical models con-
struction. 

The main disadvantage of the macromodel construction 
approach based on optimization is the complexity of 
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corresponding optimization problem. The main factors 
which make this optimization problem complex are: 

‐ high dimension of vector *


  that is defined by the 
number of macromodel coefficients; 

‐ strong nonlinear interrelation between the model 
coefficients; 

‐ large number of operations required to calculate goal 
function; 

‐ the presence of local minimums caused by both 
nonlinearity of the goal function and rounding errors; 

‐ big difference between magnitudes of optimal 
coefficient values. 

Thus many techniques were developed to simplify the 
optimization problem and accelerate its solution. In 
particular: 

The division of the model identification process into 
stages. The effectiveness of this approach is caused by 
exponential dependency of computational complexity of the 
optimization problem on the number of its coefficients. So 
the division of the identification process into stages and 
corresponding reduction of the number of coefficients that 
are simultaneously optimized results in significant decrease 
of the total amount of calculations required. The most 
known algorithms for such division are: 

The division by output variables, in which a separate 
sub-model is built for each output variable of the object (for 
each element of vector y


). All other each output variables 

of the object are considered as input variables (so they are 
added to vector v


). A final model is obtained from these 

sub-models using algebraic transformations. 
The separation of linear sub-model. In this case the 

linear sub-model of the object is built first. The small signal 
mode of operation can be used for this. At the next stage a 
nonlinear model is built while model coefficients that belong 
to the linear part do not change. Finally, the general 
optimization of all model coefficients can be done. 

Using alternative approaches to determine some model 
coefficients. For example, it is often possible to calculate 
elements of matrix D  in equations (1) on the basis of zero 
data readout assuming that for 0v


 we have 0x


. 

Adding a refining sub-model. This approach consists in 
building an additional model M2 to refine the obtained 
model M1 (see Fig. 2) 

 
Fig. 2. Refined model is a combination of original model M1 and 
refining model M2 
 

Performing an expert analysis to select an optimal 
model form. In this case, the analysis of the physical 
processes that take place in the object is performed and 
model representation is selected accordingly. As a result, 
the selected model form has much less coefficients in 
comparison to general form. 

Scaling. Dynamical models being constructed are 
usually featured in practice by big difference between 
magnitudes of their coefficients. Thus the scaling has to be 
effective. Different approaches can be used to do this; in 
particular, there are automatic scaling algorithms. 
Moreover, one can scale the input and output values to be 
of the same value of magnitude. 

Parallelizing of calculations. To accelerate the 
optimization problem solving it is advisable to parallelize the 
calculations. This allows us to perform the model 
identification faster by using more calculation resources. 

Selection of effective optimization algorithm, that is 
optimal for particular optimization problem. It is known that 
our optimization problem has ravine-type dependencies and 
many local minima. Thus, it is recommended to use 
stochastic optimization algorithms. In particular, the authors 
used Rastrigin’s cone method with adaptation of algorithm 
parameters. 

Considering the variety of methods described above it 
can be stated that the most efficient model construction 
approach is a combination of them. To illustrate this, let’s 
consider the construction of a model in instantaneous 
values based on experimental data simulating a single-
phase asynchronous motor with the starting capacitor It 
should be noted, that several models were already built for 
the particular object [1, 2] using different approaches but 
those model have limited application domain because they 
were built using short transient characteristics that included 
a single transition process. As a result, the models obtained 
are unsuitable for simulation of processes different from 
those used during model construction. In particular, they 
incorrectly reflect the dependency of the object behaviour 
on its torque.  

The construction of a simple and at the same time 
accurate model of the object that can simulate a wide range 
of regimes is described in this article. To achieve this goal 
the transient characteristics used for the model constructed 
have been obtained on the basis of three transition 
processes: the engine start, increase and decrease of the 
mechanical load. The applied voltage and mechanical load 
have been selected as input variables while current and 
rotor rotation speed have been selected as output variables. 
Fig. 3 and 4 present a general view of this data and its 
enlarged fragment at the time of mechanical load increase. 

 

Fig. 3. The input data for the model construction 
 

 

Fig. 4. Enlarged fragment of the input data for the model 
construction at the time of the mechanical load increase. Rotor 
rotation speed does not change within this fragment and thus it is 
not shown 
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Model construction 
The model has been built in the form of discrete state 

equations (1) with nonlinearities approximated by cubic 
polynomial. 

It should be noted that input data arrays include a large 
number of elements (about 13000). This results in a large 
amount of calculations required. About 106 floating point 
operations are needed to calculate a single value of the 
goal function. And because the optimization algorithm 
requires many (~102) goal function calculations at one 
iteration and the expected number of iterations is also 
significant (~105), the expected total number of floating 
point operations required is about 1013. As a matter of fact, 
the required number of operations was even larger, in 
particular when performing evolutionary selection of the 
optimal model form. 

In such situation it is reasonable to use parallelization of 
calculations. The authors have applied two types of 
parallelization: several CPU cores of one PC have been 
used to calculate goal function for different coefficient sets 
at one iteration of optimization algorithm and many PCs 
communicating via internet have been used to evaluate 
alternative model forms in evolutionary selection of the best 
one. 

To simplify model construction and to obtain better 
result the model construction has been performed in several 
stages. 

At the first stage the expert analysis was used. The 
model being built is a model of electrical engine. So we can 
use known dependencies: 

(3)     dtMCuiC )( 21  

(4)   4 5i C u C u   

where 5,1, iCi  are some coefficients. 

It is obvious that the equations (3) and (4) do not 
describe the object precisely, but they represent the most 
important dependencies inside the object. Thus the 
corresponding model has the following form: 
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This model includes only 4 unknown coefficients: G11, 
G22, α1 and α2, so its identification using optimization is not 
complex. The response of the obtained model to the test 
input is shown at Figure 5. The mean-root-square error of 
this model is of 14.4%. 

 

Fig. 5. Output variables of the object. Measured experimental 
values are shown in grey; values calculated using model (5) are 
shown in black 
 

As it was expected, this model is not sufficiently precise. 
The reason consists in its too simple form. Nevertheless, it 
reflects the most fundamental dependencies inherent to 
engines. 

To improve the model accuracy the evolutionary 
selection of the model form was used at the second stage. 
The search was done within the cubic approximation with 
two components of the state vector. The model (5) was 
taken as an initial approximation. 

Much bigger amount of computations was needed at 
this stage. The total computation time was about 10 hours 
with 4-core PC. The obtained model has the following form: 
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The corresponding response of the obtained model to 
the test input is shown at Figure 6. The mean-root-square 
error of this model is of 11.5%. 

 
 

Fig.6. Output variables of the object. Measured experimental 
values are shown in grey; values calculated using model (6) are 
shown in black. 

 

 

 
 

Fig. 7. Enlarged fragment of Pic. 6. at the time of the mechanical 
load increase 

 

As it can be seen, the model accuracy is significantly 
improved by adding four terms. It is unexpected to see the 

term   320
kx  because it represents the dependency 

between the current and the rotor rotation speed in the form 
3~i  which can hardly be explained based on physical 

phenomena. But as it turned out, such dependency was 
really present in input data as a result of systematic error 
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caused by the imperfection of the used equipment. This 
term was removed from the model at the later stages the 
model construction. 

The analysis of this model shows that it does not 
correctly depict the current amplitude. In particular, it 
pertains to its increase when mechanical load increases 
(the middle of the Fig. 6). Additionally, it has some phase 
shift, which can be seen on the enlarged fragment shown in 
Figure 7. 

To improve the model, one more state variable was 
added at the third stage. The resulting model form is as 
follows: 
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The model identification was done starting from the 
initial approximation of the coefficients taken from the model 
(6). The mean-root-square error of the resulting model is of 
8.3%. The model correctly depicts the phase of the current 
but still does not depict the increase of its amplitude when 
the mechanical load increases. Thus at the next stage the 
evolutionary selection of the optimal model form was 
conducted. The search was also done within the cubic 
approximation but that time the state variables vector 
included 3 components. The model (7) was taken as the 
initial approximation. 

 

 

Fig. 8. Output variables of the object. Measured experimental 
values are shown in grey; values calculated using model (8) are 
shown in black 

 

Fig. 9. Enlarged fragment of Figure 8. at the time of the mechanical 
load increase 

This evolutionary model form selection requires more 
calculations than the one performed at the second stage 
(due to higher complexity of the model and greater number 

of alternative model forms). Thus PC cluster containing 
seven 4-core CPUs was used. The obtained model has the 
following form: 
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The response of the obtained model to the test input is 
shown at Figure 8 and 9. The mean-root-square error of this 
model is of 6.3%. 

At the final stage the term   320
kx  was excluded from 

the model and the coefficients refinement was performed. 
Thus the final model has the following form: 
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The model coefficients are as follows: 

(10)
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Conclusion 

An optimization approach for mathematical model 
construction with the described additions, in particular an 
expert analysis, evolutionary selection of an optimal model 
form and parallelization of calculations allows us to solve 
the practical task of building models for quite complicated 
nonlinear dynamical systems. It is obvious that the obtained 
model can be further improved. But each model is a 
compromise between simulation precision and model 
complexity. 
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The model has been tested under different conditions, in 
particular with lower input voltage and with higher 
mechanical load. In both cases the simulation results match 
the real object behaviour. 
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