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in combustion process 

 
 

Abstract. The paper discusses modelling and analysis of electrostatic precipitator (ESP) used in industrial combustion processes. The main 
emphasis was put on numerical dependencies and physiochemical properties for effective combustion system control. 
 
Streszczenie. W artykule omówiono modelowanie i analizę elektrofiltru (ESP) stosowanego w procesach spalania w przemyśle. Główny nacisk 
położono na zależności i właściwości fizykochemiczne w celu efektywnego sterowania układem spalania. (Modelowanie i analiza elektrofiltru 
w procesie spalania). 
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Introduction 

Coal is still the main fuel used in electricity generation 
around the world. Solid fuels, such as coal, often contain 
impurities such as nitrogen and sulphur that can increase 
pollutant emissions significantly. 

There are new combustion techniques developed, such 
as reburning, air staging and flue-gas recirculation on one 
hand, but on the other hand the effectiveness of used 
electrostatic precipitators (ESP) decides on final emission. 

Fossil fuel depletion forces the use of renewable fuels, 
such as biomass neither less in the existing coal-fired 
power stations, biomass is milled and burned 
simultaneously with coal. However, low-emission 
combustion techniques as well as biomass co-combustion 
have negative side effects both on emissions and 
combustion installations by increased corrosion, boiler 
slagging. 

To minimize those effects, a proper combustion 
monitoring system needs to be applied. The way in which a 
pulverized fuel is burned largely depends on the degree of 
its granularity, among other parameters. Coal particles of 
between 5 and 400 μm in diameter are burned together in a 
swirling turbulent flame. Biomass burning stabilization is 
even more  

The commonly applied, low-emission techniques of 
pulverized coal combustion use recirculation vortexes that 
lengthen the paths of the coal grains passing through the 
flame to minimize generation of thermal oxides of nitrogen 
(NOx) [1, 2]. 

In order to make combustion of pulverized coal more 
efficient and clean, it is necessary to measure its key 
parameters and associate them with electrostatic 
precipitator (ESP) outputs. 

The paper discusses effectiveness analysis of 
electrostatic precipitator (ESP) used in industrial 
combustion processes. The main emphasis was put on 
numerical dependencies and physiochemical properties 
connected with fly ash granulation and composition. 
 
The aim of ESP diagnosis in combustion process 

An electrostatic precipitator (ESP) is a filtration device 
that removes fine particles e.g. dust and smoke, from a 
flowing gas using the force of an induced electrostatic 
charge minimally impeding the flow of gases through the 
unit. 

The most basic precipitator contains a row of thin 
vertical wires, and followed by a stack of large flat metal 
plates oriented vertically, with the plates typically spaced 

about 1 cm to 18 cm apart, depending on the application. 
The air or gas stream flows horizontally through the spaces 
between the wires, and then passes through the stack of 
plates. 

 
 
Fig.1. Conceptual diagram of an electrostatic precipitator 
 

A negative voltage (thousands of volts) is applied 
between wire and plate. If the applied voltage is high 
enough, an electric corona discharge ionizes the gas 
around the electrodes. Negative ions flow to the plates and 
charge the gas-flow particles. 

The ionized particles, following the negative electric field 
created by the power supply, move to the grounded plates. 
Particles build up on the collection plates and form a layer. 
The layer does not collapse, thanks to electrostatic 
pressure (due to layer resistivity, electric field, and current 
flowing in the collected layer). 
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Fig.2. Scheme of horizontal, two stage electrostatic precipitator 
(ESP): 1 - bulk hopper, 2 - participator chamber,  3 - confusor and 
outlet channels , 4 - collecting electrodes system, 5 - corona 
electrode system, 6 - high voltage supply. 
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Efficiency of precipitation 
An electrostatic precipitator (ESP) separates fine 

particles from a flue gas by charging the particles and 
driving them toward the collecting plate using electrostatic 
forces. 

To describe the phenomena occurring in electrostatic 
precipitators - the Deutsch theory is used. His model is also 
used for the analysis and design of electrostatic 
precipitators work. The basic equation describing the 
precipitator performance was introduced by White, and then 
modified by Matts and Oehnfeldt [3]. 
 

For example, typical equation should be as: 
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where:  d  - Interval precipitator performance for grain 

diameter d ,  dwt - Theoretical velocity of dust grains with 

a diameter d , L  - the length of the electric field,  

h  - distance between electrodes of different lengths. 
 Electrostatic body forces can produce a secondary 

gas flow, well known as electric wind or corona wind in an 
ESP. 

Yamamoto and Velkoff [4], Kallio and Stock [5] solved 
governing equations for the fluid flow and the electric field to 
investigate the particulate-free secondary flow interaction 
between those fields.  

Charged dust particles migrate to the collecting plate 
due to Coulomb forces, but are also under the influence of 
momentum interaction with the gas flow in terms of 
aerodynamic drag. The motion of charged particles 
suspended in the gas stream has been studied by 
Watanabe [4] and Meroth et al. [7]. 

Heavily loaded particles generate high particle charge 
density, and it can change the electric potential and the ion 
charge density distribution. Cristina and Feliziani [8] 
included the particle space charge effect in the calculation 
of the electric field and the current density distribution. They 
solved the electrical equations only, and perfect turbulent 
dispersion of particles was assumed to express particle 
concentration as a simple function of the distance from the 
inlet of the ESP. They employed the saturation charge 
formula to determine the particle charge. Since particles are 
getting charged by the local electric field through the whole 
drift motion, the saturation charge would represent only 
a rough estimation of the particle space charge. Meroth et 
al. [7] showed that the charge development of particles 
through their trajectories is much different from the 
saturation value, especially for small particles. 
 
Physical modelling 

In most works regarding ESP modelling physical 
approach dominates. Electrically induced turbulent flows 
have very wide spectra of physically important length and 
time scales. 

The gas flow is governed by the time-averaged 
conservation equations of mass and momentum. 

For steady, isothermal flow they have the following 
forms: 
Conservation of mass and conservation of momentum: 
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where  and ion  are the mass density of the gas and the 

ion charge density, u  is the time-averaged gas velocity, 

Df  represents the momentum source associated with the 

aerodynamic drag, and E is the strength of the electric 
field. Turbulent viscosity t is calculated from the solution 

of the conservation equations of turbulence kinetic energy 
and turbulence dissipation rate in the RNG k model 
(Yakhot and Orszag [3,9]). 

In the two-layer model, the flow domain is divided into a 
viscosity-affected region and a fully turbulent region. The 
one-equation model of Wolfshtein [3] is used in the 
viscosity-affected near-wall region whereas the RNG 

k model is employed in the fully turbulent region. 
The particulate two-phase flow is described basically in 

two ways, namely the Lagrangian and the Eulerian 
methods. The Lagrangian approach treats the fluid phase 
as a continuum and calculates the trajectory of a discrete 
single particle from the balance of forces acting on the 
particle. The Eulerian approach treats the particulate phase 
as a continuum as well as the gas phase. The conservation 
equations of mass and momentum are solved for both 
phases. Both approaches have their advantages and 
disadvantages (Durst et al. [3, 10]). 

In most cases [3-10] turbulent fluid flow in an ESP is 
modelled by the commercial CFD package (using finite 
volume method for the time-averaged Navier-Stokes 
equations closed by the RNG turbulence model) and the ion 
charge density and the electric field are obtained from the 
numerical solution of a Poisson equation for the electric 
potential and the current continuity equation by using 
a finite volume method [3, 11]. 

Despite this fact, for further analysis purposes we have 
considered time series modelling based on real power plant 
measured data.  

The input signals we considered: summary plant thermal 
power, exhaust pressure before ESP (both left and right 
side), input exhaust temperature (both left and right side). 
System states are based on temperature – resistivity 
(voltage and current) relation considered in four ESP fields 
and hopping frequency. Outputs were: output dust 
concentration, exhaust pressure behind ESP and output 
exhaust temperature (considered in both left and right ESP 
side). 

The data set was prepared regarding data quality and 
divided into several subsets for model identification and 
validation. We used Matlab Identification Toolbox software. 
Regarding to multivariable plant, the achieved model was 
identified using state space and nonlinear model structures. 

Practically, the MSE is typical performance function 
used in training. The best results in model accuracy were 
achieved for the nonlinear autoregressive exogenous model 
(NARX) is a nonlinear autoregressive model with 
exogenous inputs. It means that the model relates the 
current value of a time series where it is possible to explain 
or predict to both: past values of the same series and 
current and past values. 

 
The typical equation should be as: 
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where y is the variable of interest, and u  is the externally 

determined variable. In this scheme, information about u  
helps predict y , as do previous values of y itself. The   is 

the error term (sometimes called noise). 
Such models are not only important for the forecasting 

of time series but also generally for the control of the 
dynamical system. This is a powerful class of models which 
are well suited for modelling nonlinear systems and 
specially time series. One principal application of NARX 
dynamic neural networks is in control systems. 

There are some important qualities about NARX 
networks with gradient-descending learning gradient 
algorithm. The first one is more effective learning in NARX 
networks than in other neural network (the gradient descent 
is better in NARX). Also these networks converge much 
faster and generalize better than other networks [12 - 15]. 

The empirical studies have shown that in case gradient-
descent learning algorithms, sometimes it is difficult to learn 
simple temporal behaviour with long time dependencies 
[14]. It proved that for gradient-based training algorithms for 
systems with long time dependencies, the information about 
the gradient contribution m steps in the past vanishes for 
large m. This effect is referred to as the problem of 
vanishing gradients, which partially explains why gradient 
descent algorithms are not very suitable to estimate 
systems and signals with long time dependencies. For 
instance, common recurrent neural networks encounter 
problems when learning information with long time 
dependencies, a problem in the prediction of nonlinear and 
no stationary signals. The vanishing gradients problem 
makes the learning of long-term dependencies in gradient 
based training algorithms difficult or even impossible in 
certain cases [13]. 

 

A state space representation of recurrent NARX neural 
networks can be expressed as [12]: 
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where the output    kzky i and Nizi ,...2,1,  , are 

state variables of recurrent neural network. The recurrent 
network exhibits forgetting behaviour, if: 
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where z  is state variable, I  denotes the set of input 

neurons. O  denotes the set of output neurons and K  
denotes the time index set. 

 

Several approaches have been suggested to get around 
the problem of vanishing gradient in training recurrent 
neural networks. Most of them rest on including embedding 
memory in neural networks, whereas the others propose 
improved learning algorithms, such as the extended Kalman 
filter algorithm, Newton type algorithm or annealing 
algorithm, etc. 

Particularly significant in recurrent NARX and NARMAX 
neural networks is embedded memory. 

This embedded memory can help to speed up 
propagation of gradient information, and hence help to 
reduce the effect of vanishing gradient. There are various 
methods of introducing memory and temporal information 
into neural networks.  

These include creating a spatial representation of 
temporal pattern, putting time delays into the neurons or 

their connections, employing recurrent connections, using 
neurons with activations that sum input over time, etc. 

The NARX model for approximation can be 
implemented in many ways, but the simpler seems to be by 
using a feedforward neural network with the embedded 
memory (a first tapped delay line), plus a delayed 
connexion from the output of the second layer to input  
(a second tapped delay line).  

For learning purposes, a dynamic back-propagation 
algorithm is required to compute the gradients, which is 
more computationally intensive than static back-propagation 
and takes more time. In addition, the error surfaces for 
dynamic networks can be more complex than those for 
static networks. Training is more likely to be trapped in local 
minima [12, 16]. 

The training process has some difficulties. One is 
related to the number of parameters, which refers to how 
many connections or weights are contained in network. 
Usually, this number is large and there is a real danger of 
“overtraining” the data and producing a false fit which does 
not lead to better forecasts. This fact motivates the use of 
an algorithm including the regularization technique, which 
involves modifying the performance function for reducing 
parameters value. The typical performance function used in 
training is Mean Squared Error, MSE [12]. 

In our research we applied achieved model into Simulink 
scheme and tested step responses with maximal 
amplitudes for appropriate signals. The system response is 
presented in the figure 3.  
 

 

Fig.3. Achieved, linearized model step response 
 
 The output dust concentration response, both for left 
and right side of the ESP model may be treated as inertial 
second-order member in response to step thermal power 
input. 
 For further research ESP resistance in reference to 
hopping frequency in all four fields was considered 
presented in fig. 4. 
 This gives information about important meaning of first 
and second ESP field as well as compensatory action in the 
other fields. 
Then model was updated about the information of 
resistance – temperature information, presented in the 
figure 5. 

Only the first field gives representative information so it 
was used in ESP model. 

The research also included a comparison of NARX 
obtained in Matlab Identification Toolbox with NNARX 
obtained using Neural Network Toolbox.  
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Fig.4. Achieved, linearized model step response 
 

 
Fig.5. Resistance – temperature relation in considered ESP 
 

 

 
Fig.6. ESP NNARX model response plot 
 

Figure 6 illustrates ESP neural network ANRX model 
response. 

This approach allowed for a more flexible selection of 
model parameters, including more precise adjustment of the 
quantity of neurons and hidden layers. It also offered to 
distinguish nonlinear part from the achieved model. 
 
Conclusions 

The aim of the study was the relationship between dust 
removal efficiency and selected physicochemical 
parameters from the process for effective combustion 
system diagnosis and control. 

Thus obtained results enabled more efficient process 
diagnostics (less complex) than computational fluid 
dynamics (CFD) approach. This offers new opportunities to 
implement control system with on-line reference model for 
such a combustion system. It is especially important in 
biomass co-firing process. 

Analysing the electrostatic dust extraction flue gas from 
the combustion process must take into account the burned 
fuel parameters and physicochemical properties of the 
processes in ESP. Fly ash grain composition was neglected 
in our research. 

The simulated results show that NARX networks are 
often much better at discovering long time – dependences 
than conventional recurrent neural networks.  

An explanation why output delays can help long-term 
dependences can be found by considering how gradients 
are calculated using the back-propagation-through-time 
(BPTT) algorithm. 

Ensuring effective dust removal in the combustion 
process directly affects the emissivity of the process. On the 
other hand, in an indirect way can contribute to a more 
effective maintenance of process parameters. 
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