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Abstract. The case is considered in which momentary DGD is estimated from waveforms of a signal transmitted in a fiber while a PMD model is 
used that ignores PMD frequency dependence, a situation which can lead to erroneous estimation. Due to random nature of momentary parameters 
of PMD it is proposed to evaluate the errors with the use of confidence intervals.  With this tool it is shown that the considered simplification of the 
PMD model can result in errors of unacceptable level. 
 

Streszczenie. Rozpatrzono przypadek w którym chwilowa wartość DGD jest estymowana na podstawie przebiegów sygnału przesyłanego 
w światłowodzie, przy czym użyto modelu PMD, który zaniedbuje zależność PMD od częstotliwości, sytuację, która może prowadzić do błędnej 
estymacji. Ze względu na losową naturę chwilowych wartości parametrów PMD zaproponowano oceniać błędy z użyciem przedziałów ufności. Przy 
pomocy tego narzędzia wykazano, że rozważane uproszczenie modelu PMD może skutkować błędami na nieakceptowalnym poziomie. (Błąd 
estymacji różnicowego opóźnienia grupowego wynikający z użycia modelu PMD pierwszego rzędu) 
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Introduction 
 Modern fiber optic direct detection communication 
networks are using more and more faster transmission 
speeds up to the limit at which polarization mode dispersion 
(PMD) effects cannot be neglected. PMD causes distortion 
to the signal that carries data, consequence of which can be 
an inacceptable level of transmission errors. PMD is 
inherent to optical fibers. It is caused by random 
birefringence resulting from imperfect circularity of a fiber 
cross section originated during manufacturing or induced 
due to mechanical stresses exerted on a fiber in 
exploitation. Due to randomness of PMD any static 
characterization of a fiber can rely only on statistical 
parameters, like PMD coefficient which is a mean (average) 
of differential group delay (DGD) of a fiber per a kilometer 
length. An average DGD of a fiber is the PMD coefficient 
times square root of a fiber length. Temporal behavior of 
PMD however, can manifest in momentary DGD that can be 
well below or above the average DGD for a time scale 
which depends on the environment in which the fiber cable 
is laid. DGD dynamics expressed in terms of time constants 
can extend from months, for undersea cables, to seconds 
and even milliseconds, for aerial cables [1]. In exploitation, 
knowledge on temporal DGD (in some cases, more 
generally, all parameters of PMD that describe the PMD 
behavior sufficiently for a given application) can be of great 
practical importance, because at moments of intense PMD 
the transmission channel suffers outage, a situation that 
should be avoided e.g. through switching a data stream to 
an another channel. Values of PMD parameters learnt 
during channel’s work provide sufficient acumen for such 
events could be properly managed. Among many methods 
for “in-work” DGD monitoring the one that extracts PMD 
parameter values from transmitted and received electric 
waveforms can be particularly advantageous for it 
eliminates the requirement for a dedicated measurement 
equipment at the cost of the use of signal sampling and 
computation of signal models, the latter believed to be far 
less expensive in massive implementation. On the other 
side, the amount of computation required by this method is 
it’s apparent disadvantage. This aspect may be of utmost 
importance in practical implementations of the considered 
concept of monitoring because monitored data should be 
acquired regularly every relatively short time interval which 
dictates the maximum time (1 second, at maximum for 
PMD) for data processing by the implemented algorithm.  
When PMD parameters are estimated from waveforms the 

main computation workload results from global optimization 
being performed for each estimation step in order to inverse 
a suitably parametrized “forward model” of a PMD affected 
received signal. The model shall be as simple as possible, 
in particular shall use minimum parameters, in favor of 
reducing the optimization work, which in general has ON 
complexity for N dimensional parameter space. The 
simplest description of momentary PMD ignores PMD 
dependence on frequency. It is the first order PMD model 
for which PMD effects on a transmitted signal in direct 
detection system are governed by two parameters: DGD 
and power split ratio between polarization modes. The 
model extension that explains PMD dependence on the first 
power of frequency is the second order PMD. It adds extra 
two parameters. Higher order PMD require even more. In 
the context of DGD estimation, staying with the first order 
PMD seems beneficial in terms of workload however, may 
be detrimental to estimation accuracy for this simple model 
imperfectly mimics reality. Then, question arises how large 
systematic error may result when first order PMD 
parameters, particularly DGD, are estimated with the use of 
the minimum model, i.e. the first order PMD, that neglects 
the frequency dependent effects.  
 In the paper the question is answered by presenting the 
method for assessment of the estimation errors and the 
answer is illustrated with a suitable example. The analysis 
is scoped to the systematic errors of DGD alone, so the 
results are applicable to the worst-case channel quality 
assessment, time-domain measurement of average DGD of 
a fiber and, others that do not require knowledge on the 
other first order PMD parameter. However here, this 
particular application scenario is considered in which DGD 
estimates are also used for calculation of PMD induced 
signal distortions, hence they are obtained through joint 
estimation with power split ratio. Further, the analysis is 
limited to the case of (a) single mode direct detection 
systems with on-off signaling, (b) optical fiber operation in 
the linear regime and, (c) negligible influence on PMD from 
the third and higher order PMD.  

The paper is organized as follows. It starts from 
presentation of the first and the second order PMD models, 
then explains the considered concept for estimation of PMD 
parameters from transmitted waveforms. Next, a proposal 
for characterization of the estimation error is described. The 
proposed tool is used to evaluate estimation errors which is 
presented in the subsequent section. The paper ends with 
conclusions summarizing the key findings.  
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PMD models up to the second order  
 In the linear operation regime an optical fiber can be 
modeled by a four-port device in which input-output pairs 
serve individual orthogonal polarization modes. Accordingly, 
optical field signal in a fiber shall be described by a two 
component vector eg. S(t)=[sa(t),sb(t)]

T describing the two 
modes [1]. As the second and higher order PMD effects 
depend on deviation of optical frequency from its central 
value, it is natural to present PMD effects in the frequency 
domain. For the first order PMD model one writes in the 
frequency domain [2]: 
(1)       SRRY    

where:  is the momentary DGD,  is power split ratio, S() 
is spectrum of the optical field injected to the optical fiber by 
a transmitter, Y() is spectrum of the optical field incident at 
a photodiode, R and R are rotation matrices defined as 
follows: 
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In (2)  denotes the angle between S() polarization plane 
and the slow axis of the optical fiber, cos2(/2)=. In (1) a 
scaling factor resulting from transmission loss to optical 
signal is omitted for simplicity. Possible phase delay was 
dropped because it has no significance in direct detection 
systems. 
 The analytic formula for the second order PMD does not 
exist, hence various approximations were proposed. Among 
them the Bruyere-Kogelnik and Orlandini-Vincetti models 
are recognized as the most accurate [3]. From the two, the 
former has the advantage of being an extension to the first 
order PMD model and allows to express to the total effects 
easily [3]: 
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with two extra parameters:  defined as polarization 
dependent chromatic dispersion (PCD) and p defined as 
depolarization rate of principal states of polarization, related 
to commonly used polarization state dispersion (PSD) 
parameter. If this parameter value is denoted by psd, it is 
related to  and p by the simple formula: psd=p. 
 
DGD estimation with the use of the first order PMD 
model 
 The first order PMD model can be transformed to the 
time domain. After conversion to optical power it can be 
deduced that the two independent polarization components 
with 0.5 time shifts combine their powers to form power of 
the received optical signal. This reads as follows:  
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where: y(t) and s(t) are optical power of output and input 
optical fields, respectively. In the monitoring systems 
considered in the paper a momentary DGD value (i.e. ) is 
being learnt through recording the photo-converted versions 

of waveforms being transmitted via the monitored optical 
channel at both ends and then by processing the samples 
to effect the joint  and  estimate. The processing algorithm 
makes use of the mathematical model (5) with continuous 
time replaced by discrete sampling time instances. Number 
of samples is finite and say equals N. The [,]T joint 
parameter value pair which provides the best, in 
probabilistic sense, fit between the signal model and the 
measurement data is the estimate searched for. Denoting 
y=m(s,,) the model that relates y vector of output power 
samples with s vector of input power samples and the first 
order PMD parameters, the formula for the joint [,]T 
maximum likelihood (ML) estimate is expressed as [4]: 
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In (6) y() is the probability density function of the noise  
with which the output signal samples y were acquired. For 
Gaussian noise, which will be the assumption hold through 
the subsequent text, the optimization in (6) can be simplified 
to a minimization of a quadratic norm ||y-m(s,,)||. 
 Please note, that regardless of the form of (6) exact 
values of the estimate can be obtained only if a global 
optimizer is used. Such optimizers exist for certain classes 
of objective functions, including those functions which have 
finite number of local extrema in a bounded parameter 
space. If it is the case one may turn to complete search 
algorithms [5]. The ||y-m(s,,)|| falls into this class. From 
(5) it flows that if s(t) is a lowpass signal, which is a justified 
assumption in telecomm applications, in the domain of  the 
objective function can be developed in a Fourier series with 
finite number of terms. Hence,  coordinates of possible 
local minima cannot be spaced closer than a reciprocal of 
the highest frequency in the Fourier series. Additionally, the 
quadratic dependence of the objective function on  
parameter eliminates other options than a single minimum 
in the  domain, for any . For such class of objective 
functions a complete search algorithm is capable of 
providing a sure result (in contrast to non-complete search 
options) in finite time [5].  
 
A method for evaluation of systematic errors of 
momentary DGD estimates due to the negligence of 
higher order PMD 
 The momentary DGD to be estimated as well as the 
remaining PMD parameters, that can affect the DGD 
estimate obtained according to (6), are random and, 
generally, can take any value within domains of their 
variability. Assessment of an estimation error of a 
momentary DGD shall use maximization of a difference 
between outputs of the  models (1) and (3) (or their time 
domain equivalents) over the entire space of PMD 
parameters engaged in the models: momentary DGD, 
power split factor between polarization modes, PCD and 
PSD. One may expect an easy result of such an 
assessment: large, or even tending to infinity, estimation 
errors returned when the true description of PMD involves 
large values of PCD and PSD parameters. However, this 
can rarely happen. Momentary values of DGD, PCD and 
PSD parameters have certain statistical distribution. They 
show correlation and their behavior is to some extent scaled 
by the average value of DGD in a fiber, or a chain of fibers 
that form an optical  communication line [7].  
 Fortunately, the average value of DGD can be easily 
assessed. In a typical situation optical fibers have 
documented PMD coefficients and lengths. Using this data 
it is easy to assess the average DGD, denoted here by av, 
that shall characterize the fiber chain [6]: 
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where: pmdk and Lk are PMD coefficients and lengths of 
fiber segments respectively. Taking it into account it is 
proposed to characterize the estimation error with the use 
of a confidence calculus and to do it in the context of an 
average DGD of a fiber under monitoring. The appropriate 
measure of the error of interest can be an allowance for an 
absolute value of a DGD estimation error which may not be 
exceeded with some prescribed probability, while estimation 
is based on measurements in a fiber with arbitrary average 
DGD. Such an error allowance is equivalent to a two sided 
confidence interval. The proposed measure can 
characterize capability of a DGD monitoring system to make 
adequately accurate measurements in certain fibers 
through giving answers to questions for what fibers and for 
what total lengths the monitoring system fits precision 
requirements of a monitoring application. For any av a 
characteristics that tells how estimation errors relate to , 
i.e. momentary DGD, being estimated will complete the 
description of DGD estimation errors. 
 

Fig.1. The contour delimiting the area with an arbitrary probability of 
[,]T occurrence in a fiber with av=25ps.  
 
 Confidence intervals for the DGD estimation error can 
be evaluated through maximization of the absolute 
estimation error while PMD parameters: , ,  and p (ref. 
eq. 4) are sampled from the highest probability density 
(HPD) space which hosts the values with prescribed 
confidence. Unfortunately, the joint probability density 
function for , ,  and p, required for this method, has been 
awaiting formulation, yet. Considering this deficiency it is 
proposed to continue with the suggested approach 
however, with the use of another result, published in [7], for 
the joint pdf for DGD and the compound second order PMD 
(SOPMD) parameter. This parameter, named here , is 
related to  and p by:  

(8)     22   p  

The joint DGD and SOPMD parameters probability 
distribution function has no analytic formula, hence results 
are available only in the graphical form of contour plots 
defining areas within which  (momentary DGD) and  
(SOPMD) values occur with some probability Pc. Here, a 
contour for Pe=0.99 taken from [7] was approximated and 
the corresponding graph is depicted in the Figure 1. 
Although the plots in [7] were calculated for an isotropic 

birefringent fiber with a fixed av=25ps it is scalable to any 
av value, according to the general statistical properties of 
PCD and PSD. The  axis scales proportionally with av, 
while the  axis scales with the square of av [7]. From the 
contours in the Figure 1 the minimum and maximum values 
of  for a given av can be read. Within this range the 
minimum and maximum value of  can be deduced for 
any . With this results a corresponding p subspace 
is defined by conjunction of three following conditions: 
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where: min, max, min and max are found for a given .  
 The most straightforward way to calculate a  estimation 
error is to generate a signal affected by the first and second 
order PMD, with PMD parameters being samples from the 
p subspace, find the estimate using (6) and then 
calculate an absolute value of a difference between the 
resulted estimate of  and the  value used for signal 
generation. Signal generation involves the y=M(s,,,,p) 
which relates the y and s vectors. It uses the time domain 
equivalent of the formula (3) to find y(t) and s(t) fields from 
which the corresponding power signals y(t) and s(t) can be 
easily obtained. 
 
Results and discussion 
 The method presented in the preceding section for 
calculation of confidence intervals for DGD estimation error 
is strictly procedural and no way was found for analytic 
formulation. Therefore one shall resort to numerical 
calculations in order to illustrate behavior of the confidence 
intervals versus average DGD and other involved 
parameters. This forces to make assumptions regarding 
those other parameters which are not of direct interest 
however, influence results. It concerns selection of a shape 
of the transmitted signal, transmitted data sequence, bit 
signaling interval length, sampling interval, optical and 
electrical filtering and, confidence level to mention the most 
influential.  

Fig.2. Confidence interval widths for errors of the DGD estimator 
versus average DGD in a fiber.  
 
 Here, these questions were answered through making 
commonly agreed choices or a selection of possibly enough 
representative example. The transmitted signal was 
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assumed the 10Gbps non-return to zero (NRZ) with 
pseudorandom PRBS-7 data sequence, which is typical for 
testing in data communication. Semi-rectangular signal 
shape was selected with rise/fall times options equal to 0.1, 
0.25 and 0.5 of the bit period (in the following denoted by 
Tb) achieved by Gaussian filtering. No other optical or 
electrical filtering was applied except that related to the 
PMD phenomenon. The PMD effects were simulated using 
the model (3). Optical signal was converted to its electrical 
equivalent in an ideal photodiode, then sampled every 
6.25ps to provide 1024 samples. Signal generation, PMD 
emulation and photo-conversion were implemented in the 
VPITransmissionMaker simulation tool.  
 The DGD estimator along with the model (1) and 
confidence interval evaluation were implemented in Matlab. 
For finding the maximum widths of confidence intervals a 
genetic search algorithm was adopted for the global 
optimization task. There were 50 genes in each generation. 
The crossing rule, mutation probability and mutation 
strength parameters were fixed through all generations. 
Each final solution was obtained after 10 generations and 
the result was selected from 50 candidates based on 
maximum value of estimation errors effected in the search. 
Genetic algorithms provide approximate results. However, it 
is believed that the obtained maxima are close to the true 
ones for an increase of the mutation intensity parameter 
altered results insignificantly. The confidence level was 
Pc=0.99 i.e. it met the data presented in the Fig 1. The av 
(average DGD that permanently characterizes a fiber of 
given length) range for which calculations were performed 
is 1.0-7.0 ps. It covers practically all transmission distances 
that shall call for PMD monitoring.  

Fig.3. Confidence interval widths for errors of the DGD estimator 
versus ratio of momentary to average DGD.  
 
 In the Fig 2 the dependence of maximum relative widths 
of confidence intervals of momentary DGD estimates 
(maximum error axis), with respect to the true momentary 
DGD, versus the av is depicted. The plots are given for 
three sets of rise (tr) and fall (tr) time parameters of the 
transmitter signal. From the graph it is evident that, due to 
the negligence of the second order PMD, the widths of 
confidence intervals are unacceptably large. For almost 
entire analyzed range of the av the maximum errors, given 

in terms of the relative widths of confidence intervals 
maximized over the entire p subspace at Pc=0.99,  
exceed 10% of the nominal  value and reach 100% for the 
upper av range limit. An exception from this general 
behavior happens for a signal with rise/fall time equal 50% 
of the bit period. Only in this case maximum estimation 
errors at 0.99 confidence level are below 30% within the 
whole analyzed av range. Closer look at the behavior of 
momentary DGD estimates in this particular case provides 
the Figure 3 where confidence interval widths are related to 
, i.e. the momentary DGD, while the av is the plot 
parameter. It can be learnt that the high values of 
confidence interval widths concentrate around low  values, 
irrespectively what value av takes. The intervals shrink 
quite rapidly when  departs from zero, particularly for low 
av. If there is an application for which the lowest , say 
approx. 1.5ps,  represents negligible informative value, it 
can enjoy relatively low maximum estimation errors in the 
remaining  range. However, this observation is not 
reproduced for the two other shapes of a transmitted signal. 
 
Conclusions 
 In view of random character of the phenomena 
governing the DGD estimation error the use of confidence 
intervals can be a tool to characterize such errors. 
Negligence of higher order PMD effect in the PMD model 
that is used to estimate DGD from transmitted on-off 
waveforms results in large confidence intervals. The 
confidence intervals at 99% confidence can be as wide as 
100% of the estimated DGD. It is relaxed for the case of a 
slow rise/fall pulses. Nevertheless, the maximum errors can 
be 30%. This a negative recommendation for 
a simplification of the PMD model by ignoring PMD 
dependence on frequency in an attempt to reduce the 
computation workload required to calculate an estimate. 
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