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A Hardware-oriented Algorithm for Complex-valued Constant
Matrix-vector Multiplication

Abstract. In this communication we present a hardware-oriented algorithm for constant matrix-vector product calculating, when the all elements of
vector and matrix are complex numbers. The main idea behind our algorithm is to combine the advantages of Winograd'’s inner product formula with
Gauss's trick for complex number multiplication. The proposed algorithm versus the naive method of analogous calculations drastically reduces the
number of multipliers required for FPGA implementation of complex-valued constant matrix-vector multiplication. If the fully parallel hardware
implementation of naive (schoolbook) method for complex-valued matrix-vector multiplication requires 4MN multipliers, 2M N-inputs adders and 2MN
two-input adders, the proposed algorithm requires only 3N(M+1)/2 multipliers and [SM(N+2)+1,5N+2] two-input adders and 3(M+1) N/2-input adders.

Streszczenie. W komunikacie zostat zaprezentowany sprzetowo-zorientowany algorytm mnozenia macierzy statych przez wektor zmiennych w
zafozeniu, gdy zaréwno elementy macierzy jak i elementy wektora sg liczbami zespolonymi. Gtéwna idea proponowanego algorytmu polega na
fgcznym zastosowaniu wzoru Winograda do wyznaczania iloczynu skalarnego oraz formuty Gaussa mnozenia liczb zespolonych. W poréwnaniu z
tradycyjnym sposobem realizacji obliczeri proponowany algorytm pozwala zredukowac liczbe ukfadéw mnozacych niezbednych do catkowicie
réwnolegtej realizacji na platformie FPGA ukfadu wyznaczania iloczynu wektorowo-macierzowego. Jedli catkowicie réwnolegta implementacja
tradycyjnej metody wyznaczania omawianych iloczynéw wymaga 4MN blokéw mnozgcych, 2M N-wej$ciowych sumatoréw oraz 2MN sumatoréow
dwuwejsciowych, to proponowany algorytm wymaga tylko 3N(M+1)/2 btokéw mnozenia, [3M(N+2)+1,5N+2] sumatoréw dwuwejsciowych i 3(M+1)
sumatoréw N/2-wejsciowych. (Sprzetowo-zorientowany algorytm wyznaczania iloczynu macierzy statych przez wektor zmiennych dla
danych zespolonych).
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Introduction

Most of the computation algorithms which are used in
digital signal, image and video processing, computer
graphics and vision and high performance supercomputing
applications have matrix-vector multiplication as the kernel
operation [1, 2]. For this reason, the rationalization of these
operations is devoted to numerous publications [3-18]. In
some cases, elements of the multiplied matrices and
vectors are complex numbers [5-9]. In the general case a
fully parallel hardware implementation of a rectangular
complex-valued matrix-vector multiplication requires MN
multipliers of complex numbers. In the case where the
matrix elements are constants, we can use encoders
instead of multipliers. This solution greatly simplifies
implementation, reduces the power dissipation and lowers
the price of the device. On the other hand, when we are
dealing with FPGA chips that contain several tens or even
hundreds of embedded multipliers, the building and using of
additional encoders instead of multipliers is irrational.
Examples could be that of the Xilinx Spartan-3 family of
FPGA'’s which includes between 4 and 104 18x18 on-chip
multipliers and the Altera Cyclone-lll family of FPGA's
which include between 23 and 396 18x8 on-chip multipliers.
Another Altera's Stratix-V GS family of FPGA'’s has between
600 and 1963 variable precision on-chip blocks optimized
for 27x27 bit multiplication. In this case, it would be
unreasonable to refuse the possibility of using embedded
multipliers. Nevertheless, the number of on-chip multipliers
is always limited, and this number may sometimes not be
enough to implement a high-speed fully parallel matrix-
vector multiplier. Therefore, finding ways to reduce the
number of multipliers in the implementation of matrix-vector
multiplier is an extremely urgent task. Some interesting
solutions related to the rationalization of the complex-valued
matrix-matrix and matrix-vector multiplications have already
been obtained [10-13]. There are also original and effective
algorithms for constant matrix-vector multiplication.
However, the rationalized algorithm for complex-valued
constant matrix-vector multiplications has not yet been
published. For this reason, in this paper, we propose such
algorithm.

Preliminary remarks
The complex-valued vector-matrix product may be defined
as:

N Y = Apmn Xnx

where Xlez[XOsxls---»XN—l]T - is N -dimensional

complex-valued input vector, Yy .; =[Yo, Yi>-» Ym _1]T -is
M -dimensional complex-valued output vector, and
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where n=0,1,...,N-1, m=0,1,....M -1, and

Xy = Xr(lr) + jxr(ll)' Ann = a'r(nr,)n + jar(r:?n v Ym = r(nr) + er(r:) :
In this expression x,(f), xr(,i), ,(nr), y,(TP are real variables,

a a0

m.n» @m.n are real constants, and j is the imaginary unit,

satisfying j2 =—1. Superscript r means the real part of

complex number, and the superscript i means the
imaginary part of complex number. The task is to calculate
the product defined by the expression (1) with the minimal
multiplicative complexity.

Brief background

It is well known, that complex multiplication requires four
real multiplications and two real additions, because:

2 (a+ jb)(c+ jd)=ac—bd + j(ad +bc) .

So, we can observe that the direct computation of (1)

requires NM complex multiplications  (4NM real
multiplications) and 2M (2N —1) real additions.
According to Winograd's formula for inner product

calculation each element of vector Y,,,, can be calculated
as follows [15]:
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if N is even. (The case of odd N, will not be considered
here, as it can easily be reduced to the even length N ). It

is clear that if we are dealing with complex-valued data,
then ¢, =c{” +jc and & =& +jel, where &
and f,(\,i) are real and imaginary parts of calculated real
variable &y respectively, cr(n') and Cg) are real and
imaginary parts of calculated in advance constants C,
Here it should be emphasized that because a,, are

constants, the C,, can be precomputed and stored in a

lookup table in advance. Thus, the calculation of ¢, does
not require the execution of arithmetic operations during
realization of the algorithm. The calculation of &£ requires

the implementation of the N/2 complex multiplications.
Therefore, we can observe that the computation of (3) for all
m requires only N(M +1)/2 complex multiplications

(2N (M +1)real multiplications). However, the number of

real additions in this case is significantly increased.

It is well known too, that the complex multiplication can be
carried out using only three real multiplications and five real
additions, because [13]:

(4) (a+ jb)(c+ jd)y=ac—bd + j[(a+b)(c+d)—ac—bd].

Expression (4) is well known as Gauss's trick for
multiplication of complex numbers [16]. Taking into account
this trick the expression (3) can be calculated using the only
3N(M +1)/2  multiplications of real numbers at the

expense of further increase in the number of real additions.

The algorithm

Xn]" in the

(r) (@) 4T
XN XNa]

- in the following form:

First, we present the vector Xy.,q =[Xg,X{,---
following form: X,y =[x\, x7, x(", ",
and vector Yy,; =[Yq, Y>> Ym-1]
Yowa =067 96 " 17 97 s ViR Vi
Next, we split vector X,y,, into two separate vectors X(l)
and X(NL containing only even-numbered and only odd-
numbered elements respectively:

X([\?x [X(()f) X(l) ng) X(l) X&r)z’x(l)z]

X@ =[xO,x® x(0,x{ o x T x® T

Then from the elements of the matrix A,y we form two
super-vectors of data:

N
~ (5D
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- _ SN,
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where

A% 0]

(r) 0] (r 0] T
Ao =80 211580 o> 12k+1’al2k+1”"’aM—1,2k+l7aM—1,2k+1] ;

(k) (r) () ) 4@ (r) 0] T
A2M><1_[ A 5k > 89 2k > 81,2k > &1 2k -+ 8M 1 2k Am1.2k ]
And now we introduce the vectors

(i) ]T

_ () (i) () (i) ()
Comua =[-Cy"=Cy =€ ', =C 7 oes = Cy L, —Cy

= =[- (N _g() _e(r) _g)  _g(n _ (i)]T
SoMx1 N 576N »7SN >7SN »» SN >SN 1 -
Next, we introduce some auxiliary matrices:
P =1y ®(1yy ®L,), T =Ty ®Ts, ,
MNxN % Iy 2) %MNxMN % 3x2

Z3MXM :llxﬂ @Iy L), Topyau =Iv ®Ths,

2 2
1o
1o 1 1)
-1

where 1),y -isan M xN matrix of ones (a matrix where

every element is equal to one), I

matrix and sign ,, ® " denotes tensor product of two matrices
[17].

Using the above matrices the rationalized computational
procedure for calculating the constant matrix-vector product
can be written as follows:

- is an identity N xN

Yomx = Eomua +1Comx + Tomam [E

3 X
3MXEMN
© D, T Al 4P x{
X + .
EMN EMN MN( MNx1 MNxN le)]}
M_l
D3MN - I@ p{", b =diag(s{",s",sy,

where sign ,,@ " denotes direct sum of the matrices which

are numbered in accordance with the increase of the

superscript value [17].

If the elements of D,
JMN

the order and written in the form of the vector

S, =D; 1, , then they can be calculated using
7MN><1 EMN EMNXI

placed vertically without disturbing

the following vector-matrix procedure:

© ST T (AW +Pranen Xk -
2 2
1 -1
T =1 T.,, T, =
EMNXMN MN ®T3><2’ T3><2 1 1
2 2 0 1

As already noted, the elements of the vector C,,,,, can be
calculated in advance. However, the elements of vector
E,mx1 Must be calculated during the realization of the

algorithm. The procedure describes the implementation of
computing elements of this vector can be represented in the
following form:

@) Eomx :PZMx2T2x323Xﬂ‘PﬂTﬂXNX(I\IJ)XI‘
2 2 2
where
Ty =Ty ®To Py =1y ®L.Z 5y =1 @1,
2 2 2 2
and
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If the elements of ¥; placed vertically without disturbing
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2
the order and written in the form of the vector

¥, =W¥; 1; ,thenthey can be calculated using the
5 x1 5 —Nx1
following vector-matrix procedure:
¥, =T, XQ. T, =Iy0T,.
%le %NXN Nl %NXN % P2

Consider, for example, the case of N=4 and M =3.
Then the procedure (5) takes the following form:

- 5 = 1 1
Yo =86q +{Coa + Too[Zous XD18T18><12(A€2)><1 +P12><4X51>3] JIE
where

i i i)qT
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5
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AQ =[ai).a02.a(7.a).a00.a3]" Toy =1, O T,
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1
and ¥, = ® P, W = diag(s 2K, g2k 2k
k=0

The data flow diagram for realization of proposed
algorithm is illustrated in Figure 1. In turn, Figure 2 shows a
data flow diagram for computing elements of the matrix

D3MN/2 in accordance with the procedure (6). In this paper,

the data flow diagrams are oriented from left to right. Note
[13-14] that the circles in these figures show the operation
of multiplication by a real number (variable) inscribed inside
a circle. Rectangles denote the real additions with values
inscribed inside a rectangle. Straight lines in the figures
denote the operation of data transfer. At points where lines
converge, the data are summarized. (The dashed lines
indicate the subtraction operation). We use the usual lines
without arrows specifically so as not to clutter the picture.
Figure 3a shows a data flow diagram for computing
elements of the vector E,,, in accordance with the

procedure (7). In turn, Figure 3b shows a data flow diagram
for computing elements of the diagonal matrix W5y, .

Discussion of hardware complexity

We calculate how many multipliers and adders are required,
and compare this with the number required for a fully
parallel naive implementation of complex-valued matrix—
vector product in Eq. (1). The number of conventional two-

input multipliers required using the proposed algorithm is
3N(M +1)/2. Thus using the proposed algorithm the

number of multipliers to implement the complex-valued
constant matrix-vector product is drastically reduced.
Additionally our algorithm requires 2M (N +1) one-input

adders with constant numbers (ordinary encoders),
M(N +4)+1,5N +2 conventional two-input adders, and
3(M +1) (N/2) -input adders. Instead of encoders we can
apply the ordinary two-input adders. Then the
implementation of the algorithm will require 3N(M +1)/2
multipliers 3M (N +2)+ 15N +2 two-input signed adders

and 3(M +1) (N/2) -input adders.

y§”

yy
y”
y
ys”

yd

Fig.1. Data flow diagram for rationalized complex-valued constant
matrix-vector multiplication algorithm for N=4, M=3.

In turn, the number of conventional two-input multipliers
required using fully parallel implementation of “schoolbook”
method for complex-valued matrix-vector multiplication is
4MN . This implementation also requires 2M N -inputs
adders and 2MN two-input adders. Thus, our proposed
algorithm saves 50 and even more percent of two-input
embedded multipliers but it significantly increases number
of adders compared with direct method of fully-parallel
implementation. For applications where the "cost" of a
multiplication is greater than that of an addition, the new
algorithm is always more computationally efficient than
direct evaluation of the matrix-vector product. This allows
concluding that the suggested solution may be useful in a
number of cases and have practical application allowing to
minimize complex-valued constant matrix-vector multiplier's
hardware implementation costs.
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Fig.2. The data flow diagram for calculating elements of diagonal
matrix Dz for N=4, M=3.
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Fig.3. The data flow diagrams for calculating elements of vector
Zex1 (@), and for calculating elements of diagonal matrix Ws (b).

Concluding remarks

The article presents a new hardware-oriented algorithm
for computing the complex-valued constant matrix-vector
multiplication. To reduce the hardware complexity (number
of two-operand multipliers), we exploit the Winograd’s inner
product formula and Gauss trick for complex number
multiplication. This allows the effective use of parallelization
of computations on the one hand and results in a reduction
in hardware implementation cost of complex-valued
constant matrix-vector multiplier on the other hand.

If the FPGA-chip already contains embedded multipliers,
their number is always limited. This means that if the
implemented algorithm contains a large number of
multiplications, the developed processor may not always fit
into the chip. So, the implementation of proposed in this
paper algorithm on the base of FPGA chips, that have built-

fin binary multipliers, also allows saving the number of
these blocks or realizing the whole complex-valued
constant matrix-vector multiplying unit with the use of a
smaller number of simpler and cheaper FGPA chips. It will
enable to design of data processing units using a chips
which contain a minimum required number of embedded
multipliers and thereby consume and dissipate least power.
How to implement a fully parallel complex-valued constant
matrix-vector multiplier on the base of concrete FPGA
platform is beyond the scope of this article, but it's a subject
for follow-up articles.
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