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Abstract. In this paper a technique for fault detection in hardware implementation of the PP-1 symmetric block cipher has been studied. Simulations 
of the behaviour of fault propagation in the key scheduling process is reported. The simulation proves that both parts of the algorithm, data-path and 
control, should be protected. Previous studies [1, 2] have only considered the data-path, ignoring the key scheduling. A proposal for fault detection in 
key scheduling is presented, which require a limited amount of circuit overhead and does not require modification of the PP-1 algorithm.  
 

Streszczenie. W pracy przedstawiono metodę wykrywania błędów w sprzętowej implementacji szyfru PP-1. Skupiono się na module generowania 
kluczy rundowych. Pokazano propagację błędów w tym module a tym samym to, że ważne jest wykrywanie błędów nie tylko w module 
przetwarzania danych ale także podczas wyznaczania kluczy rundowych. Zaproponowano metodę wykrywania błędów, która nie wymaga 
modyfikacji samego algorytmu PP-1 i nie wprowadza dużej nadmiarowości sprzętowej ani czasowej. (Metoda wykrywanie błędów w module 
generowania kluczy szyfratora, skupiona na operacjach). 
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1. Introduction 
Secure implementations of cryptographic systems have 

received much attention. Conventional cryptanalysis deals 
with the mathematical properties of a system, and the 
physical cryptanalysis focuses on the physical behaviour of 
a system during operation. Basically, all assumptions for all 
kinds of physical attacks apply to all ciphers when they are 
implemented. Each attack can be different from the others, 
depending on the actual implementation and depending on 
the properties of the cipher.  

Differential fault analysis (DFA) is a method of physical 
cryptanalysis and was originally proposed by Biham and 
Shamir in 1997 [3]. It assumes that an attacker can induce 
faults into a cipher and collect the correct as well as the 
faulty behaviours. Then the attacker compares the 
behaviors in order to retrieve the secret information 
embedded inside the cipher. It means that fault detection is 
a desirable property for preventing malicious attacks, aimed 
at extracting sensitive information, like the secret key, from 
the device.  

There are different types of faults and methods of fault 
injection in encryption algorithms. The faults can be 
transient or permanent. Several transient and permanent 
faults and methods of fault injection such as varying supply 
voltage, external clocks, temperature or inducing faults 
using white light, laser and X-rays methods of fault injection 
are discussed in detail in [4]. 

Concurrent Error Detection (CED) techniques are widely 
used to enhance system dependability. The proposed 
solutions consist of using various forms of redundancy to 
obtain an attack-resistant architecture. These solutions 
have different area overhead, performance penalty, and 
fault detection latency [5, 6, 7].  

This paper recommends possible countermeasure 
against the fault attacks. The countermeasure is, mainly, a 
parity check method to verify the correctness of the round 
key. Proposed method does not require modification of the 
PP-1 algorithm. We develop the model presented in [1, 5] 
and extend the fault analysis to the Key Schedule unit. We 
show that the Key Schedule unit has a highly dispersive 
behavior that allows an error to propagate quickly, but this 
does not compromise the detection rate of the parity code. 

We provide simulation results related to the fault 
coverage of the proposed approach.  

This paper is organized as follows. Sec. 2 and 3 present 
the PP-1 block cipher - processing path and key scheduling 

module respectively. In Sec. 4 error propagation in key 
scheduling module is shown. Possible faults and faults 
models are described in Sec. 5. In Sec. 6 we present CED 
schemes. Simulation results are presented in Sec. 7. Sec. 8 
concludes the paper. 
 

2. Processing path of PP-1 cipher 
The scalable PP-1 cipher is a symmetric block cipher 

designed at the Institute of Control and Information 
Engineering, Poznań University of Technology. It was 
designed for platforms with limited resources, and it can be 
implemented for example in simple smart cards.  

The PP-1 algorithm is an SP-network. It processes in r 
rounds data blocks of n bits, using cipher keys with lengths 
of n or 2n bits, where n = t*64, and t = 1, 2, 3, .... One round 
of the algorithm is presented in Fig. 1. It consists of t=n/64 
parallel processing paths. In each path the 64-bit nonlinear 
operation NL is performed. Additionally the n-bit 
permutation P is used. In the last round, the permutation P 
is not performed. These algorithm is presented in [6].  

 
Fig. 1.One round of PP-1 (i = 1, 2, ..., r-1) [6] 

 
Two n-bit round keys ki’=k2i–1 and ki”=k2i are used in 

round i, where i = 1, 2, ..., r. Let j denote the number of the 
parallel processing paths from left to right, j = 1, 2, ..., t. 
Then ki’ = ki,1’|| ki,2’||...||ki,t’, ki” = ki,1”|| ki,2”||...||ki,t”.  

The 64-bit round subkeys ki,j’ and ki,j” used in the 
element NL #j, consist of eight 8-bit elementary keys ki,j,l 
(l = 1, 2, ..., 8), so ki,j’ = ki,j,1’|| ki,j,2’||...|| ki,j,8’ and ki,j” = ki,j,1”|| 
ki,j,2”||...|| ki,j,8” [6]. 

The same algorithm is used for encryption and 
decryption. However, if in the encryption process we use 
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the round keys k1, k2, ..., k2r then in the decryption process 
these keys must be used in the reverse order, i.e. k2r, k2r–1, 
..., k1. 

 

3. Round key scheduling 
The round key scheduling is performed in 2r+1 iterations 

(i = 0, 1, ..., 2r), where r is the number of rounds. One 
iteration of key scheduling is presented in Fig. 2. The round 
keys k1, k2, ..., k2r are produced on outputs of iterations #1 
to #2r [6]. 

 
Fig. 2. One iteration of key scheduling (i = 0, 1, ..., 2r) [6] 

 

 
Fig. 3. KS − the main part of an iteration (j = 1, 2, ..., t) [6 
 
The KS element of the iteration is shown in Fig.3. It is 

composed of substitution S, XOR, addition and subtraction 
modulo 256. The operation RR(ei) is the rotation of n-bit 
block Vi by ei bits to the right. The 4-bit integer ei is obtained 
as the result of the XOR operation for 4-bit arguments, 
which are the 4 most significant bits of the output of the two 
leftmost S-boxes. Thus for Vi = v1v2...vn, where v1 is the 
most significant bit, the value of ei is calculated as follows: 

ei = E(v1v2...vn) = (v1v9)(v2v10)(v3v11)(v4v12).  
 

4. Error propagation in key scheduling 
The error propagation behavior of the data path (i.e., the 

encryption or decryption process) was studied in [1]. 
Another part of the algorithm implementation that can be 
affected by faults is the key schedule. A single faulty bit 
injected during the round key computation process may 
cause a large number of erroneous bits in the next round 
keys. At Fig. 4 a single fault was injected in the first round 
and at Fig. 5 in the last round. Italic font indicates erroneous 
key bits in subsequent rounds (right side of the figure).  

Error propagation analysis was carried out to 
understand the effect of an error injected into the round key 
computation. Experiments were conducted by injecting a 
single bit flip error at different bits randomly and the number 
of bits that were in error was computed. One faulty bit 
injected in one of the inputs of S-boxes in the first round 
causes about 52% faulty bits in the next rounds.  

This analysis helps us in choosing suitable error 
detection schemes. 

 
5. Faults models 

Fault attack tries to modify the functioning of the 
computing device in order to retrieve the secret key. The 
attacker induces a fault during cryptographic computations. 
The feasibility of a fault attack or at least its efficiency 
depends on the exact capabilities of the attacker and the 
type of faults he can induce. 

In our considerations we use a realistic fault model 
wherein either transient or permanent faults are induced 
randomly into the device. We consider single and multiple 
faults.  

Faults are modelled as a m - bit error vectors 
E={em,...,ei,...,e1}, where m{4,8,n}, ei{0,1} and ei=1 
indicates that bit i is faulty. The number of ones in this 
vector is equal the number of inserted faults. Fault 
simulations were performed for two kind of fault models. In 
one model the fault flips the bit, and the other model 
introduces bit stuck-at faults (stuck-at-1 and stuck-at-0). 

Let X={xm,...,x1} be an error-free vector of bits. Vector 
Xe={xem,...,xe1} is an erroneous input vector: 

- for bit flip error— xei= xi  ei, 
- for stuck-at-1 fault — xei= xi  ei, 
- for stuck-at-0 fault — xei= xi × (not ei), 

where:  - xor,+ - or, × - and operations.  
 

 

0:  0010111000101100010001001110001000011000011110110010100010010101
1:  1100111110010010001001010110100011101101001101100100100100101101 
2:  1100101101111011100111110101010100110001111100001010111111010010 
3:  1101101101111101001101110000000110101001001001000000111000000110 
4:  1011010011010111000110001111000110111010110100101110110100110000 
5:  1011110000111100101010111000010100000010110110100110100011101100 
6:  0101111101010101111011111011111111100001100100001101010000000001 
7:  0100111010010001111011011001000100110100110111111111101100011000 
8:  1110010100100011010001100000100101011101011000011010110001100110 
9:  1011100100001100100100110010101111000100010110110111000010101001 
10:  0101110001100000111010100101101111011111001110100111011111100010 
11:  0101110010100101111100110011010111100101110100011011100001011100 
12:  1010000111000100000110001000010001100000010011101010000001001000 
13:  1100011110001100101100001011101111001111000011100011100010000001 
14:  1001010111010011001110010010111000111100100000010011111100011010 
15:  0110111010001110011111011010001000100011000100000010101001110010 
16:  1011001000111001100101011100000101101100001001000111110010111101 
17:  0110011101100000100101000011010011110110101110101100110100011010 
18:  0000010101111001001011111010010010000001001110011010011110111011 
19:  0101101011001011011101010000101010001101101100101100010001000001 
20:  0101000000110110010111101100100011000110100000101100101001100010 
21:  0101100011011001010101010110011000111010011011010010000100010100 
22:  1111010010101111111010010101011010101011000111100101001001111101 

0:  0010111000101100010001001110001000011000011110110010100010010101 
1:  1110010010001110010010100011101101001101100100100100101101110011 
2:  0110011100110111110111100101010100010010001100111110011110101000 
3:  0000011111111011011110010000001001010010011001110101011011011000 
4:  0111100110010010010001011010001111001101100000001000101001010110 
5:  1011000010111110111101000101000100111000010101101101001011101100 
6:  1100000101011111001101100101110100000100101000000001001001001001 
7:  0101110001011001100111111001000011010010001000111100101111011110 
8:  0110110110100110011110011000001001011000010000011010010100110000 
9:  1011111010111101111010111110100000101010100100010100101100100111 
10:  0001110111111011001111001000011010100101110010100100000101001101 
11:  1010100110110011010111011001011101010000000011110111000011001011 
12:  1000010110000000111010001000011001111110100101011100010011100110 
13:  0111101011111100111100101110000011111110110111100101011101000110 
14:  0010001101100100101010101000111000001010101100110110010010100111 
15:  0000010111101011100101010110111011111001000110101001000101011111 
16:  1110010111101100101011111011011111100110110011100010011001101010 
17:  0101000000110000001001101000101100100001010001010011100011000010 
18:  0001111001100001101101100000101110011010001001010001110000000100 
19:  0111100111000100000100101101010100011101001101000100000110001111 
20:  0011100111001101001101111101110100111000011100011000101011010100 
21:  0001010111011111111111100001101001101010100010000110111100001101 
22:  0110101001000100100011110010010101001111111101010001101001001100 

Fig. 4. A single fault injected in the first round of key scheduling 
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Fig. 6. Parity based CED with input and output parity bits 

 
CED 

When the data-path is assumed to be fault-free and the 
key scheduling is affected by the injection of a single faulty 
bit at some round, it has been verified that a faulty bit 
injected in the early rounds causes a high number of 
erroneous bits. If the erroneous round key is used for 
decryption, it is not possible to detect the presence of a 
faulty bit in the key material. The sender will be unable to 
realize that the transmitted encrypted data is corrupted and 
the receiver will decrypt useless data. Consequently, 
special attention must be paid to the fault management of 
the round key. The operations are the same as in the case 
of the data processing path. 

A proposal for error detection in the data-path of PP-1 
was described in [5]. The goal there was to prevent an 
attacker from breaking the cipher system by injecting one or 
more incorrect bits.  

In this paper we will analyse the possibilities of errors 
detection in the part of key schedule. As it mentions above, 
the operations are the same as in the case of the data 
processing path, it means substitution box S, XOR, addition 
and subtraction modulo 256. Besides the operation RR(ei) 
is used. It is the rotation of n-bit block Vi by ei bits to the 
right. Each of these operations is protected. 

In [5] has been proposed, implemented and tested a 
parity based method of concurrent error detection in S-
boxes. The S-box is usually implemented as a 256x8 bits 
memory, consisting of a data storage section and an 
address decoding circuit. To increase the dependability and 
detect input, output and internal memory errors of the S-box 
we propose replacing the 256x8 bits memory that stores the 
S-box values with 256 x10 bits memory. One of these two 
additional bits is parity bit generated for incoming data 
bytes, the other one is parity bit generated for outgoing data 
(Fig. 6). 

In our experiments we focused on transient and 
permanent, single and multiple stuck-at faults and bit flips 
faults. Single, transient stuck-at-0/1 errors are detected in 
50%, but permanent errors are detected in 100%. Detection 
percentage for single bit flip errors is close to 100%. The 
same is observable for permanent and transient errors. 

Two another operations - XOR and RR(ei) (rotation of n-
bit block Vi by ei bits to the right) we protect using parity 
code. Parity bits are capable of detecting all single bit errors 
and those multiple bit errors where the number of errors is 
odd. We cannot, however, employ just a single parity bit for 
fault detection. As it shown in Sections 4, errors spread 
quickly throughout the key scheduling block and, on the 
average, about half of the state bits become corrupt. Hence, 
the fault coverage of the parity bits would be at best around 
50%, which is unacceptable in practice.  

To circumvent these problems, we propose to associate 
one parity bit with each input/output byte of XOR element 
(Fig. 7).  

)()()( KpApKAp   

where: A – data byte, K – key byte. 

 
Fig. 7. Parity based CED for XOR operation 

 
In this way each parity bit will depend only on a limited 

portion of the data (8 bits). 
Rotation RR(ei) we protect using only one parity bit for 

input data, and one for output data and we detect only 
single bit errors and those multiple bit errors where the 
number of errors is odd. 

A method of CED for two successive operations, 
addition and subtraction modulo 256 is shown in the Fig. 8. 
We use an inverse operation for each data byte. In this 
case area overhead is more as 100% but all errors are 
detected. 

Fig. 5. A single fault injected in the last round of key scheduling 

0:  0010111000101100010001001110001000011000011110110010100010010101 
1:  1100111110010010001001010110100011101101001101100100100100101101 
2:  1100101101111011100111110101010100110001111100001010111111010010 
3:  1101101101111101001101110000000110101001001001000000111000000110 
4:  1011010011010111000110001111000110111010110100101110110100110000 
5:  1011110000111100101010111000010100000010110110100110100011101100 
6:  0101111101010101111011111011111111100001100100001101010000000001 
7:  0100111010010001111011011001000100110100110111111111101100011000 
8:  1110010100100011010001100000100101011101011000011010110001100110 
9:  1011100100001100100100110010101111000100010110110111000010101001 
10:  0101110001100000111010100101101111011111001110100111011111100010 
11:  0101110010100101111100110011010111100101110100011011100001011100 
12:  1010000111000100000110001000010001100000010011101010000001001000 
13:  1100011110001100101100001011101111001111000011100011100010000001 
14:  1001010111010011001110010010111000111100100000010011111100011010 
15:  0110111010001110011111011010001000100011000100000010101001110010 
16:  1011001000111001100101011100000101101100001001000111110010111101 
17:  0110011101100000100101000011010011110110101110101100110100011010 
18:  0000010101111001001011111010010010000001001110011010011110111011 
19:  0101101011001011011101010000101010001101101100101100010001000001 
20:  0101000000110110010111101100100011000110100000101100101001100010 
21:  0101100011011001010101010110011000111010011011010010000100010100 
22:  1010001011100101010110010101010001111001010010011111011111010010 

0:  0010111000101100010001001110001000011000011110110010100010010101 
1:  1100111110010010001001010110100011101101001101100100100100101101 
2:  1100101101111011100111110101010100110001111100001010111111010010 
3:  1101101101111101001101110000000110101001001001000000111000000110 
4:  1011010011010111000110001111000110111010110100101110110100110000 
5:  1011110000111100101010111000010100000010110110100110100011101100 
6:  0101111101010101111011111011111111100001100100001101010000000001 
7:  0100111010010001111011011001000100110100110111111111101100011000 
8:  1110010100100011010001100000100101011101011000011010110001100110 
9:  1011100100001100100100110010101111000100010110110111000010101001 
10:  0101110001100000111010100101101111011111001110100111011111100010 
11:  0101110010100101111100110011010111100101110100011011100001011100 
12:  1010000111000100000110001000010001100000010011101010000001001000 
13:  1100011110001100101100001011101111001111000011100011100010000001 
14:  1001010111010011001110010010111000111100100000010011111100011010 
15:  0110111010001110011111011010001000100011000100000010101001110010 
16:  1011001000111001100101011100000101101100001001000111110010111101 
17:  0110011101100000100101000011010011110110101110101100110100011010 
18:  0000010101111001001011111010010010000001001110011010011110111011 
19:  0101101011001011011101010000101010001101101100101100010001000001 
20:  0101000000110110010111101100100011000110100000101100101001100010 
21:  0101100011011001010101010110011000111010011011010010000100010100 
22:  1111010010101111111010010101011010101011000111100101001001111101 
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Fig. 8. CED for addition operation 
 
6. Simulation results  

In this section, we provide simulation results related to 
the fault coverage of the proposed approach. We present 
simulation results on the vulnerability of these techniques 
for fault models from Section 5. The faults were introduced 
on inputs, outputs of all operations and into internal memory 
of the S-box.  

In order to measure the detection capability we used 
VHDL hardware description language and the VHDL 
simulator provided by Aldec, Active-HDL. The VHDL model 
of the key scheduling module of the PP-1 cipher has been 
modified with the faults. In our considerations we used a 
realistic fault model wherein faults are induced randomly 
into the device at the beginning of the rounds, i.e., faults are 
not injected between the round operations. In this 
experiment we focused on transient and permanent, single 
and multiple stuck-at faults and bit flips faults.  

We perform a check at the output of each round 
operations (Figs. 9 and 10) and at the end of every round 
(Fig. 11). In the first case it is determined the probability of 
detecting all injected faults. Each security module operates 
independently of the others and detect errors only in its 
area. 

 
Fig. 9. Probability of permanent errors detection 

 

 
Fig. 10. Probability of transient errors detection 
 

In the second case we determine the probability of 
detecting only those faults that changed the round keys. In 
this case all single, permanent errors are detected. In the 
Fig. 11 we can see, that the percentage of undetected 
multiple, permanent errors is small (less than 0.15%) and 

decreases with the number of bit errors. We can say that 
according to an exponential law. 

Percentage of undetected transient errors is greater and 
is maximum 1.2%. 
 
 

 
Fig. 11. Permanent faults undetected at the end of round 

 
7. Conclusion 

Fault attacks are becoming a serious threat to hardware 
implementations of ciphers and proper countermeasures 
must be adopted to foil them. The simulation proves that 
both parts of the algorithm, data-path and control, should be 
protected. Previous studies [1, 2] have only considered the 
data-path, ignoring the key scheduling. In this paper we 
have presented an operation-centered approach to the 
incorporation of fault detection into cryptographic device 
implementations with the small hardware overhead. This 
method of error detecting can provide a useful protection 
against fault attacks and, in general, against errors 
occurring during the encryption process. It provide full 
coverage of single-bit errors and high coverage of multiple-
bit errors, which are the most common in fault attacks. A 
proposed fault detection method in key scheduling module 
required a limited amount of circuit overhead and does not 
require modification of the PP-1 algorithm. 
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