
96 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 1/2017

Ewa IDZIKOWSKA

Poznań University of Technology

doi:10.15199/48.2017.01.23

An operation-centered approach to fault detection in key
scheduling module of cipher

Abstract. In this paper a technique for fault detection in hardware implementation of the PP-1 symmetric block cipher has been studied. Simulations
of the behaviour of fault propagation in the key scheduling process is reported. The simulation proves that both parts of the algorithm, data-path and
control, should be protected. Previous studies [1, 2] have only considered the data-path, ignoring the key scheduling. A proposal for fault detection in
key scheduling is presented, which require a limited amount of circuit overhead and does not require modification of the PP-1 algorithm.

Streszczenie. W pracy przedstawiono metodę wykrywania błędów w sprzętowej implementacji szyfru PP-1. Skupiono się na module generowania
kluczy rundowych. Pokazano propagację błędów w tym module a tym samym to, że ważne jest wykrywanie błędów nie tylko w module
przetwarzania danych ale także podczas wyznaczania kluczy rundowych. Zaproponowano metodę wykrywania błędów, która nie wymaga
modyfikacji samego algorytmu PP-1 i nie wprowadza dużej nadmiarowości sprzętowej ani czasowej. (Metoda wykrywanie błędów w module
generowania kluczy szyfratora, skupiona na operacjach).

Keywords: PP-1 cipher, Concurrent Error Detection, round key scheduling, parity bits.
Słowa kluczowe: szyfr PP-1, współbieżne wykrywanie błędów, generowanie kluczy rundowych, bity parzystości.

1. Introduction
Secure implementations of cryptographic systems have

received much attention. Conventional cryptanalysis deals
with the mathematical properties of a system, and the
physical cryptanalysis focuses on the physical behaviour of
a system during operation. Basically, all assumptions for all
kinds of physical attacks apply to all ciphers when they are
implemented. Each attack can be different from the others,
depending on the actual implementation and depending on
the properties of the cipher.

Differential fault analysis (DFA) is a method of physical
cryptanalysis and was originally proposed by Biham and
Shamir in 1997 [3]. It assumes that an attacker can induce
faults into a cipher and collect the correct as well as the
faulty behaviours. Then the attacker compares the
behaviors in order to retrieve the secret information
embedded inside the cipher. It means that fault detection is
a desirable property for preventing malicious attacks, aimed
at extracting sensitive information, like the secret key, from
the device.

There are different types of faults and methods of fault
injection in encryption algorithms. The faults can be
transient or permanent. Several transient and permanent
faults and methods of fault injection such as varying supply
voltage, external clocks, temperature or inducing faults
using white light, laser and X-rays methods of fault injection
are discussed in detail in [4].

Concurrent Error Detection (CED) techniques are widely
used to enhance system dependability. The proposed
solutions consist of using various forms of redundancy to
obtain an attack-resistant architecture. These solutions
have different area overhead, performance penalty, and
fault detection latency [5, 6, 7].

This paper recommends possible countermeasure
against the fault attacks. The countermeasure is, mainly, a
parity check method to verify the correctness of the round
key. Proposed method does not require modification of the
PP-1 algorithm. We develop the model presented in [1, 5]
and extend the fault analysis to the Key Schedule unit. We
show that the Key Schedule unit has a highly dispersive
behavior that allows an error to propagate quickly, but this
does not compromise the detection rate of the parity code.

We provide simulation results related to the fault
coverage of the proposed approach.

This paper is organized as follows. Sec. 2 and 3 present
the PP-1 block cipher - processing path and key scheduling

module respectively. In Sec. 4 error propagation in key
scheduling module is shown. Possible faults and faults
models are described in Sec. 5. In Sec. 6 we present CED
schemes. Simulation results are presented in Sec. 7. Sec. 8
concludes the paper.

2. Processing path of PP-1 cipher
The scalable PP-1 cipher is a symmetric block cipher

designed at the Institute of Control and Information
Engineering, Poznań University of Technology. It was
designed for platforms with limited resources, and it can be
implemented for example in simple smart cards.

The PP-1 algorithm is an SP-network. It processes in r
rounds data blocks of n bits, using cipher keys with lengths
of n or 2n bits, where n = t*64, and t = 1, 2, 3, One round
of the algorithm is presented in Fig. 1. It consists of t=n/64
parallel processing paths. In each path the 64-bit nonlinear
operation NL is performed. Additionally the n-bit
permutation P is used. In the last round, the permutation P
is not performed. These algorithm is presented in [6].

Fig. 1.One round of PP-1 (i = 1, 2, ..., r-1) [6]

Two n-bit round keys ki’=k2i–1 and ki”=k2i are used in

round i, where i = 1, 2, ..., r. Let j denote the number of the
parallel processing paths from left to right, j = 1, 2, ..., t.
Then ki’ = ki,1’|| ki,2’||...||ki,t’, ki” = ki,1”|| ki,2”||...||ki,t”.

The 64-bit round subkeys ki,j’ and ki,j” used in the
element NL #j, consist of eight 8-bit elementary keys ki,j,l
(l = 1, 2, ..., 8), so ki,j’ = ki,j,1’|| ki,j,2’||...|| ki,j,8’ and ki,j” = ki,j,1”||
ki,j,2”||...|| ki,j,8” [6].

The same algorithm is used for encryption and
decryption. However, if in the encryption process we use

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 1/2017 97

the round keys k1, k2, ..., k2r then in the decryption process
these keys must be used in the reverse order, i.e. k2r, k2r–1,
..., k1.

3. Round key scheduling
The round key scheduling is performed in 2r+1 iterations

(i = 0, 1, ..., 2r), where r is the number of rounds. One
iteration of key scheduling is presented in Fig. 2. The round
keys k1, k2, ..., k2r are produced on outputs of iterations #1
to #2r [6].

Fig. 2. One iteration of key scheduling (i = 0, 1, ..., 2r) [6]

Fig. 3. KS − the main part of an iteration (j = 1, 2, ..., t) [6

The KS element of the iteration is shown in Fig.3. It is

composed of substitution S, XOR, addition and subtraction
modulo 256. The operation RR(ei) is the rotation of n-bit
block Vi by ei bits to the right. The 4-bit integer ei is obtained
as the result of the XOR operation for 4-bit arguments,
which are the 4 most significant bits of the output of the two
leftmost S-boxes. Thus for Vi = v1v2...vn, where v1 is the
most significant bit, the value of ei is calculated as follows:

ei = E(v1v2...vn) = (v1v9)(v2v10)(v3v11)(v4v12).

4. Error propagation in key scheduling
The error propagation behavior of the data path (i.e., the

encryption or decryption process) was studied in [1].
Another part of the algorithm implementation that can be
affected by faults is the key schedule. A single faulty bit
injected during the round key computation process may
cause a large number of erroneous bits in the next round
keys. At Fig. 4 a single fault was injected in the first round
and at Fig. 5 in the last round. Italic font indicates erroneous
key bits in subsequent rounds (right side of the figure).

Error propagation analysis was carried out to
understand the effect of an error injected into the round key
computation. Experiments were conducted by injecting a
single bit flip error at different bits randomly and the number
of bits that were in error was computed. One faulty bit
injected in one of the inputs of S-boxes in the first round
causes about 52% faulty bits in the next rounds.

This analysis helps us in choosing suitable error
detection schemes.

5. Faults models

Fault attack tries to modify the functioning of the
computing device in order to retrieve the secret key. The
attacker induces a fault during cryptographic computations.
The feasibility of a fault attack or at least its efficiency
depends on the exact capabilities of the attacker and the
type of faults he can induce.

In our considerations we use a realistic fault model
wherein either transient or permanent faults are induced
randomly into the device. We consider single and multiple
faults.

Faults are modelled as a m - bit error vectors
E={em,...,ei,...,e1}, where m{4,8,n}, ei{0,1} and ei=1
indicates that bit i is faulty. The number of ones in this
vector is equal the number of inserted faults. Fault
simulations were performed for two kind of fault models. In
one model the fault flips the bit, and the other model
introduces bit stuck-at faults (stuck-at-1 and stuck-at-0).

Let X={xm,...,x1} be an error-free vector of bits. Vector
Xe={xem,...,xe1} is an erroneous input vector:

- for bit flip error— xei= xi  ei,
- for stuck-at-1 fault — xei= xi  ei,
- for stuck-at-0 fault — xei= xi × (not ei),

where:  - xor,+ - or, × - and operations.

0: 0010111000101100010001001110001000011000011110110010100010010101
1: 1100111110010010001001010110100011101101001101100100100100101101
2: 1100101101111011100111110101010100110001111100001010111111010010
3: 1101101101111101001101110000000110101001001001000000111000000110
4: 1011010011010111000110001111000110111010110100101110110100110000
5: 1011110000111100101010111000010100000010110110100110100011101100
6: 0101111101010101111011111011111111100001100100001101010000000001
7: 0100111010010001111011011001000100110100110111111111101100011000
8: 1110010100100011010001100000100101011101011000011010110001100110
9: 1011100100001100100100110010101111000100010110110111000010101001
10: 0101110001100000111010100101101111011111001110100111011111100010
11: 0101110010100101111100110011010111100101110100011011100001011100
12: 1010000111000100000110001000010001100000010011101010000001001000
13: 1100011110001100101100001011101111001111000011100011100010000001
14: 1001010111010011001110010010111000111100100000010011111100011010
15: 0110111010001110011111011010001000100011000100000010101001110010
16: 1011001000111001100101011100000101101100001001000111110010111101
17: 0110011101100000100101000011010011110110101110101100110100011010
18: 0000010101111001001011111010010010000001001110011010011110111011
19: 0101101011001011011101010000101010001101101100101100010001000001
20: 0101000000110110010111101100100011000110100000101100101001100010
21: 0101100011011001010101010110011000111010011011010010000100010100
22: 1111010010101111111010010101011010101011000111100101001001111101

0: 0010111000101100010001001110001000011000011110110010100010010101
1: 1110010010001110010010100011101101001101100100100100101101110011
2: 0110011100110111110111100101010100010010001100111110011110101000
3: 0000011111111011011110010000001001010010011001110101011011011000
4: 0111100110010010010001011010001111001101100000001000101001010110
5: 1011000010111110111101000101000100111000010101101101001011101100
6: 1100000101011111001101100101110100000100101000000001001001001001
7: 0101110001011001100111111001000011010010001000111100101111011110
8: 0110110110100110011110011000001001011000010000011010010100110000
9: 1011111010111101111010111110100000101010100100010100101100100111
10: 0001110111111011001111001000011010100101110010100100000101001101
11: 1010100110110011010111011001011101010000000011110111000011001011
12: 1000010110000000111010001000011001111110100101011100010011100110
13: 0111101011111100111100101110000011111110110111100101011101000110
14: 0010001101100100101010101000111000001010101100110110010010100111
15: 0000010111101011100101010110111011111001000110101001000101011111
16: 1110010111101100101011111011011111100110110011100010011001101010
17: 0101000000110000001001101000101100100001010001010011100011000010
18: 0001111001100001101101100000101110011010001001010001110000000100
19: 0111100111000100000100101101010100011101001101000100000110001111
20: 0011100111001101001101111101110100111000011100011000101011010100
21: 0001010111011111111111100001101001101010100010000110111100001101
22: 0110101001000100100011110010010101001111111101010001101001001100

Fig. 4. A single fault injected in the first round of key scheduling

98 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 1/2017

Fig. 6. Parity based CED with input and output parity bits

CED

When the data-path is assumed to be fault-free and the
key scheduling is affected by the injection of a single faulty
bit at some round, it has been verified that a faulty bit
injected in the early rounds causes a high number of
erroneous bits. If the erroneous round key is used for
decryption, it is not possible to detect the presence of a
faulty bit in the key material. The sender will be unable to
realize that the transmitted encrypted data is corrupted and
the receiver will decrypt useless data. Consequently,
special attention must be paid to the fault management of
the round key. The operations are the same as in the case
of the data processing path.

A proposal for error detection in the data-path of PP-1
was described in [5]. The goal there was to prevent an
attacker from breaking the cipher system by injecting one or
more incorrect bits.

In this paper we will analyse the possibilities of errors
detection in the part of key schedule. As it mentions above,
the operations are the same as in the case of the data
processing path, it means substitution box S, XOR, addition
and subtraction modulo 256. Besides the operation RR(ei)
is used. It is the rotation of n-bit block Vi by ei bits to the
right. Each of these operations is protected.

In [5] has been proposed, implemented and tested a
parity based method of concurrent error detection in S-
boxes. The S-box is usually implemented as a 256x8 bits
memory, consisting of a data storage section and an
address decoding circuit. To increase the dependability and
detect input, output and internal memory errors of the S-box
we propose replacing the 256x8 bits memory that stores the
S-box values with 256 x10 bits memory. One of these two
additional bits is parity bit generated for incoming data
bytes, the other one is parity bit generated for outgoing data
(Fig. 6).

In our experiments we focused on transient and
permanent, single and multiple stuck-at faults and bit flips
faults. Single, transient stuck-at-0/1 errors are detected in
50%, but permanent errors are detected in 100%. Detection
percentage for single bit flip errors is close to 100%. The
same is observable for permanent and transient errors.

Two another operations - XOR and RR(ei) (rotation of n-
bit block Vi by ei bits to the right) we protect using parity
code. Parity bits are capable of detecting all single bit errors
and those multiple bit errors where the number of errors is
odd. We cannot, however, employ just a single parity bit for
fault detection. As it shown in Sections 4, errors spread
quickly throughout the key scheduling block and, on the
average, about half of the state bits become corrupt. Hence,
the fault coverage of the parity bits would be at best around
50%, which is unacceptable in practice.

To circumvent these problems, we propose to associate
one parity bit with each input/output byte of XOR element
(Fig. 7).

)()()(KpApKAp 

where: A – data byte, K – key byte.

Fig. 7. Parity based CED for XOR operation

In this way each parity bit will depend only on a limited

portion of the data (8 bits).
Rotation RR(ei) we protect using only one parity bit for

input data, and one for output data and we detect only
single bit errors and those multiple bit errors where the
number of errors is odd.

A method of CED for two successive operations,
addition and subtraction modulo 256 is shown in the Fig. 8.
We use an inverse operation for each data byte. In this
case area overhead is more as 100% but all errors are
detected.

Fig. 5. A single fault injected in the last round of key scheduling

0: 0010111000101100010001001110001000011000011110110010100010010101
1: 1100111110010010001001010110100011101101001101100100100100101101
2: 1100101101111011100111110101010100110001111100001010111111010010
3: 1101101101111101001101110000000110101001001001000000111000000110
4: 1011010011010111000110001111000110111010110100101110110100110000
5: 1011110000111100101010111000010100000010110110100110100011101100
6: 0101111101010101111011111011111111100001100100001101010000000001
7: 0100111010010001111011011001000100110100110111111111101100011000
8: 1110010100100011010001100000100101011101011000011010110001100110
9: 1011100100001100100100110010101111000100010110110111000010101001
10: 0101110001100000111010100101101111011111001110100111011111100010
11: 0101110010100101111100110011010111100101110100011011100001011100
12: 1010000111000100000110001000010001100000010011101010000001001000
13: 1100011110001100101100001011101111001111000011100011100010000001
14: 1001010111010011001110010010111000111100100000010011111100011010
15: 0110111010001110011111011010001000100011000100000010101001110010
16: 1011001000111001100101011100000101101100001001000111110010111101
17: 0110011101100000100101000011010011110110101110101100110100011010
18: 0000010101111001001011111010010010000001001110011010011110111011
19: 0101101011001011011101010000101010001101101100101100010001000001
20: 0101000000110110010111101100100011000110100000101100101001100010
21: 0101100011011001010101010110011000111010011011010010000100010100
22: 1010001011100101010110010101010001111001010010011111011111010010

0: 0010111000101100010001001110001000011000011110110010100010010101
1: 1100111110010010001001010110100011101101001101100100100100101101
2: 1100101101111011100111110101010100110001111100001010111111010010
3: 1101101101111101001101110000000110101001001001000000111000000110
4: 1011010011010111000110001111000110111010110100101110110100110000
5: 1011110000111100101010111000010100000010110110100110100011101100
6: 0101111101010101111011111011111111100001100100001101010000000001
7: 0100111010010001111011011001000100110100110111111111101100011000
8: 1110010100100011010001100000100101011101011000011010110001100110
9: 1011100100001100100100110010101111000100010110110111000010101001
10: 0101110001100000111010100101101111011111001110100111011111100010
11: 0101110010100101111100110011010111100101110100011011100001011100
12: 1010000111000100000110001000010001100000010011101010000001001000
13: 1100011110001100101100001011101111001111000011100011100010000001
14: 1001010111010011001110010010111000111100100000010011111100011010
15: 0110111010001110011111011010001000100011000100000010101001110010
16: 1011001000111001100101011100000101101100001001000111110010111101
17: 0110011101100000100101000011010011110110101110101100110100011010
18: 0000010101111001001011111010010010000001001110011010011110111011
19: 0101101011001011011101010000101010001101101100101100010001000001
20: 0101000000110110010111101100100011000110100000101100101001100010
21: 0101100011011001010101010110011000111010011011010010000100010100
22: 1111010010101111111010010101011010101011000111100101001001111101

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 1/2017 99

Fig. 8. CED for addition operation

6. Simulation results

In this section, we provide simulation results related to
the fault coverage of the proposed approach. We present
simulation results on the vulnerability of these techniques
for fault models from Section 5. The faults were introduced
on inputs, outputs of all operations and into internal memory
of the S-box.

In order to measure the detection capability we used
VHDL hardware description language and the VHDL
simulator provided by Aldec, Active-HDL. The VHDL model
of the key scheduling module of the PP-1 cipher has been
modified with the faults. In our considerations we used a
realistic fault model wherein faults are induced randomly
into the device at the beginning of the rounds, i.e., faults are
not injected between the round operations. In this
experiment we focused on transient and permanent, single
and multiple stuck-at faults and bit flips faults.

We perform a check at the output of each round
operations (Figs. 9 and 10) and at the end of every round
(Fig. 11). In the first case it is determined the probability of
detecting all injected faults. Each security module operates
independently of the others and detect errors only in its
area.

Fig. 9. Probability of permanent errors detection

Fig. 10. Probability of transient errors detection

In the second case we determine the probability of
detecting only those faults that changed the round keys. In
this case all single, permanent errors are detected. In the
Fig. 11 we can see, that the percentage of undetected
multiple, permanent errors is small (less than 0.15%) and

decreases with the number of bit errors. We can say that
according to an exponential law.

Percentage of undetected transient errors is greater and
is maximum 1.2%.

Fig. 11. Permanent faults undetected at the end of round

7. Conclusion

Fault attacks are becoming a serious threat to hardware
implementations of ciphers and proper countermeasures
must be adopted to foil them. The simulation proves that
both parts of the algorithm, data-path and control, should be
protected. Previous studies [1, 2] have only considered the
data-path, ignoring the key scheduling. In this paper we
have presented an operation-centered approach to the
incorporation of fault detection into cryptographic device
implementations with the small hardware overhead. This
method of error detecting can provide a useful protection
against fault attacks and, in general, against errors
occurring during the encryption process. It provide full
coverage of single-bit errors and high coverage of multiple-
bit errors, which are the most common in fault attacks. A
proposed fault detection method in key scheduling module
required a limited amount of circuit overhead and does not
require modification of the PP-1 algorithm.

Authors: dr. inż. Ewa Idzikowska, Politechnika Poznańska, Instytut
Automatyki i Inżynierii Informatycznej, ul. Piotrowo 3a, 60-965
Poznań, e-mail: ewa.idzikowska@put.poznan.pl

The correspondence address is:
e-mail: ewa.idzikowska@put.poznan.pl

REFERENCES

[1] Idzikowska E., Bucholc K., Error detection schemes for CED in
block ciphers, Proc. of the 5th IEEE/IFIP International
Conference on Embedded and Ubiquitous Computing EUC,
Shanghai, (2008, 22-27

[2] Idzikowska E., CED for involutional functions of PP-1 cipher,
Proceedings of the 5th International Conference on Future
Information Technology, Busan, (2010)

[3] Biham E., Shamir A.: Differential fault analysis of secret key
cryptosystems, Proc of Crypto, (1997)

[4] Bar-El H., Choukri H., Naccache D., Tunstall M., Whelan C.:
The Sorcerer’s Apprentice Guide to Fault Attacks. Proc. IEEE,
vol. 94, (2006), 370-382

[5] Idzikowska E., CED for S-boxes of symmetric block ciphers,
PAK vol. 56, No. 10, (2010), 1179-1183

[6] Bucholc K., Chmiel K., Grocholewska-Czuryło A., Stokłosa J.,
PP-1 block cipher, Polish Journal of Environmental Studies,
vol. 16, No. 5B, (2007), 315−320

[7[Bertoni G., Breveglieri L., Koren I., Maistri P., and Piuri V., On
the Propagation of Faults and Their Detection in a Hardware
Implementation of the Advanced Encryption Standard, Proc.
Conf. Application-Specific Systems, Architectures, and Proces-
sors (ASAP ’02), (2002) 303-312

