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Abstract. A nearest neighbour model with exogenous variables representing weather factors for electricity demand forecasting in short horizons is 
proposed. Weather factors are included into the k-nearest neighbours regression model as forecast pattern contexts. Similarities between contexts 
affect the weights assigned to the patterns in the regression model. The proposed model is examined in several forecasting problems with different 
levels of influence of weather factors on the demand. For strong influence the forecast results are improved due to incorporation of weather inputs. 
 
Streszczenie. Zaproponowano model najbliższych sąsiadów ze zmiennymi egzogenicznymi reprezentującymi czynniki pogodowe do 
krótkoterminowego prognozowania zapotrzebowania mocy. Czynniki pogodowe wprowadzone są do modelu regresji k-najbliższych sąsiadów jako 
konteksty obrazów prognoz. Podobieństwa pomiędzy kontekstami wpływają na wagi obrazów w modelu regresyjnym. W badaniach symulacyjnych 
obserwuje się poprawę rezultatów dzięki wprowadzeniu kontekstów, gdy wpływ czynników pogodowych na zapotrzebowanie jest istotny. (Model 
najbliższych sąsiadów z wejściami pogodowymi do opartego na obrazach prognozowania zapotrzebowania na moc). 
 
Keywords: short-term load forecasting, nearest neighbour model, pattern similarity-based forecasting. 
Słowa kluczowe: prognozowanie krótkoterminowe obciążeń, model najbliższego sąsiedztwa, prognozowanie oparte na podobieństwie 
obrazów. 
 
 
Introduction 
 Nearest neighbour methods such as k-nearest 
neighbours (k-NN) are ones of the most popular methods of 
pattern recognition. Despite their simplicity they 
successfully compete with more sophisticated methods of 
classification and regression and are even known to be the 
most effective ones [1]. Reduction of the recognition region 
to the neighbourhood of the input sample (this 
neighbourhood is represented by a set of k nearest 
neighbours of the input sample) introduces local character 
of the model. It is worth noting that k-NN methods do not 
require any assumptions about domain and data 
representation except that there is specified some measure 
of similarity or distance [2]. Also any assumptions about 
codomain of the target mapping are not needed. If 
codomain is a set of real numbers, the algorithm solves the 
problem of function approximation. When codomain is a set 
of categories, the k-NN solves data classification problem. 
 In our case the problem of electricity demand 
forecasting is treated as a regression problem. The 
regression function estimator has the nonparametric form:  
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where: x is the vector of predictors, y is the response 
vector, N is the number of learning samples and w(.) is the 
weighting function.   
 A vector x consists of the lagged values of the 
forecasted variable, while a vector y consists of its future 
values. So the model maps previous values of some 
variable into its future values. The weighting function w(.) 
assigns positive weights to learning samples which belong 
to the set of k-nearest neighbours of the input vector x. 
Samples outside of this set have zero weights. According to 
(1) the forecasted y-vector is calculated as the weighted 
mean of the learning y-vectors corresponding to the x-
vectors belonging to the neighborhood of the current input 
vector x. The weights for nearest neighbours can be all the 
same (1/k) or can express similarity between vectors in X-
space.  
 The forecasting model based on k-NN was proposed in 
[3]. In this work we expand this model by incorporation 

additional predictors corresponding to weather factors. This 
leads to generalization of the nearest neighbor model and 
can improve its accuracy.      
 
Nearest neighbour forecasting model 
 A vector of predictors x is called an input pattern. Their 
components represent successive demand or load values 
from the daily period: Li = [Li,1 Li,2 … Li,n], where Li,t is the 
power system load at period t of the day i and n is typically 
24, 48 or 96. The load vector Li is mapped into pattern xi = 
[xi,1 xi,2 … xi,n] as follows: 
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where iL  is the mean load of the day i. 

Equation (2) expresses normalization of vectors Li. After 
normalization they are unified: they all have unity length, 
zero mean and the same variance.  
 The response vector y is called an output or forecast 
pattern. The output pattern yi = [yi,1 yi,2 … yi,n] maps the load 
vector representing successive loads from the day i+:  
Li+ = [Li+,1 L i+,2 … Li+,n], where  > 0 is a forecast horizon:  
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The goal of mapping the response vectors into y-patterns is 
their unification. Unified x- and y-patterns express shapes of 
daily curves. Annual and weekly variations and also trend 
are filtered out. Note that in (3) we use the known current 

process parameters for the day i:  iL  and 
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instead of parameters for the day i+ which are unknown. 
This enables us to determine the forecast of vector Li+ 
using transformed equation (2) after the forecast of pattern 
y is generated by the model. 
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 The i-th input and output patterns are paired and 
included in the training set  = {(x1, y1), ..., (xN, yN)}. For the 
current input pattern x its k nearest neighbours in the 
training set  are selected. Let us denote successive 
nearest x-patterns as: x1, x2, ..., xk, and their corresponding 
y-patterns as: y1, y2, ..., yk. We call these k y-patterns the 
construction patterns, because the output y-pattern is 
estimated using (4) based only on these patterns: 
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 The weighting function is of the form [4]: 
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where: a and b are parameters, and d(x, xj) is the distance 
between patterns x and xj. 
 Function (5) is shown in Fig. 1. Note that more distant 
neighbours have smaller weights and consequently less 
impact on shaping the model response.   
 Fig. (2) shows the k-NN forecasting model scheme, 
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Fig.1. Weighting function (5) for b = 0 – continuous lines, b = 5 – 
dashed lines, b = –0,8 – dotted lines, a = 1 – dark lines and a = 0,25 
– light lines. 
 

 
 
Fig.2. Scheme of the k-NN model. 
 
Weather factors as forecast pattern contexts 
 To include weather factors as exogenous variables into 
the k-NN model we define contexts of the forecast pattern. 
Contexts for representing weather factors in pattern 
similarity-based forecasting models were proposed in [5]. 
By a context we mean a factor influencing the forecasted 
load, e.g. atmospheric temperature, humidity, wind speed, 

etc. Contexts related to different factors can be expressed 
by scalars or vectors. For example, mean daily temperature 
or minimal and maximal daily temperatures or series of 24 
hourly temperatures in the day of forecast. The learning 
sample is extended to include m contexts: (x, c1, c2, ..., cm, y), 
where cl is the l-th context vector or scalar. When we 
denote a set of predictors as p = {x, c1, c2, ..., cm}, the 
learning sample is (p, y).    
 In the forecasting phase, the k nearest neighbours for 
the current predictors p are selected in , based on the 
combined distance taking into account x-patterns and 
contexts: 
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where: cl and cl,i are vectors of the l-th contexts 
corresponding to patterns x and xi, v0 is the weight assigned 
to the distance between x-patterns and v1, v2, ..., vm are 
weights assigned to distances between successive 

contexts, 1
0

 

k

l lv .  

 The distances between x-patterns, d(x, xi), and contexts, 
d(cl, cl,i), should be from the same range to unify their impact 
on the combined distance (6). This impact can be controlled 
by weights vl adjusted during training.  
 Let us denote successive nearest neighbours of p as: p1, 
p2, ..., pk. The weighting function has the form (5) but instead 
of distances between x-patterns we use distances between 
predictors (6): 
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The regression k-NN model with contexts is of the form: 
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 Note that the influence of the construction pattern yj on 
the regression curve depends not only on the similarity 
between xj and the current input pattern x, as in (4), but also 
on the similarities between contexts of yj and contexts of the 
forecasted pattern y.    
 
Application examples 
 The proposed k-NN model with exogenous variables 
was implemented in MATLAB and tested in one day ahead 
load forecasting ( = 1) on several datasets, briefly 
described in Table 1. These data are available on the 
websites of system operators [6]. Utilized time series are 
intended to illustrate power systems of various size and 
demand characteristics. Each dataset includes hourly load 
time series (n = 24) and covers three years, from 2011 to 
2014. Data from year 2011 to 2013 were used for model 
training and data from the last year were used for testing 
the model  – created forecast was used as ex-post 
validation. Mean absolute percentage error (MAPE) was 
applied as a forecast quality measure in the following 
experiments. 
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Fig.3. Temperature-demand relationship for datasets 
 
Table 1. Datasets description 

Label Name Mean demand 
PL PSE, Poland 18.2 GW 
BE Elia, Belgium 9.1 GW 
NE ISO-NE, New England 14.4 GW 
TX ERCOT, Texas 38.1 GW 

 
 Weather variables available for datasets are dry-bulb 
temperature and dew point temperature. Of these two, the 
former was chosen to define pattern context because of 
better results obtained during preliminary tests. Scatter 
plots showing temperature-demand relationship for our 
datasets are presented in Fig. 3. As we can see this 
relationship can be different depending on the power 
system features and geographical location. Strong 
nonlinearity of this relationship is observed for NE and TX. 
Such visible increase in electrical demand when 
temperature is decreasing below some threshold, as well as 
when it is increasing above it, has been already analysed in 
several papers [7, 8], and is mostly caused by HVAC 
(heating, ventilation, and air conditioning) equipment. 
Imbalance between heating and cooling components across 
different countries is attributed to different economic and 
climatic conditions [8]. 
 Various versions of the proposed k-NN model was 
examined. All of them use the Euclidean metric as a 
distance measure. Differences between model variants 
concern the way of selection of neighbours and weather 
variables used as contexts. The model variants depending 
on the way of selection of neighbours are:  
 WD – neighbours chosen from (x, y) pairs, where y is 
the same weekday as the forecasted day. 
 DT – neighbours chosen from (x, y) pairs, where y is the 
same type of day (workday, Saturday, Sunday, holiday) as 
the forecasted day. 
 WDT1 – if forecasted day is a holiday, neighbours 
chosen from (x, y) pairs, where y is a holiday too. 
Otherwise, neighbours are chosen as in WD. 
 WDT2 – if forecasted day is a holiday, neighbours are 
chosen from (x, y) pairs, where y is the same weekday. 
Otherwise, neighbours are chosen as in DT. 
The model variants depending on the weather extensions 
are: 
 A – one context vector including 24 temperatures in 
each hour of the day represented by input pattern x. 
 B – one context vector including 24 temperatures in 
each hour of the forecasted day represented by output 
pattern y. 
 C – two context vectors, c1 and c2: c1 is same as used in 
A, c2 is same as used in B. 
 In B and C variants we use real temperatures for the 
day of forecast rather than predicted ones (ideal forecast). 
This let us to take weather forecast error aside from error 
introduced by our model.  
 In a first step of model building, variants without 
exogenous variables were optimized to find the best 

number of neighbours k and parameters of weighting 
function (5), a and b. With assumed ranges: k = 1,…, 20, a = 
0, 0.1,…,1 and b = -0.99, 0.9,0.8,…,80, the best values of 
parameters were found using exhaustive search. The aim 
was to find for every model variant (WD, DT, WDT1, WDT2) 
such set of parameters that minimizes MAPE averaged 
over all types of days and datasets. The optimal values 
found were: k = 13 (WD, WDT1) and k = 14 (DT, WDT2),  
a = 1 and b = 20 for all models. 
 In a next step, the best values of weights vl for combined 
distance (6) were found. Again exhaustive search was 
applied to check all valid combination of weights, assuming 

vl ∈ [0,1], 1
0

 

k

l lv  and searching step of 0.01. Separate 

optimization procedures were executed: for every model 
variant, for every type of day (workday, weekend, holidays) 
and for every dataset. Motivation for that was to get better 
understanding of temperature influence on demand for 
different types of days. This step has demonstrated that: 
 for the PL and BE datasets, the models gave best 
results when temperature was used in small extent (BE) or 
not used at all (PL).  
 for the NE and TX datasets, situation was almost 
opposite. Depending on the model’s variant, the best results 
for workdays were obtained when temperature weights 
were from 0.1 to even 0.5. The TX dataset is more 
temperature-dependent of these two. On the other hand, 
holidays demand seems to be quite insusceptible for 
temperature – most variants gave better results for 
temperature weights near to zero. 
 Finally, in the validation phase, the optimized models 
with exogenous variables were compared with their 
univariate versions (without exogenous variables) and with 
the naïve model. Simple naïve model using data from 7 
days before the forecasted day as a prediction was used as 
a benchmark. 
 Results of final evaluation are shown in Table 2. 
Introduction of weather variables into k-NN model gave 
noticeable increase in forecast accuracy for the working and 
weekend days of NE and TX datasets (holidays have seen 
no improvement). Improvement for the PL and BE datasets 
was not clearly observed. Although accuracy of forecasts 
for weekends of BE datasets were improved, for other types 
of days accuracy was at the same level or even decreased. 
For working and weekend days of both NE and TX 
datasets, all variants of the model (WD, DT, WDT1, WDT2) 
benefited from introduction of temperature data. The best 
results for workdays were observed when two hourly 
temperature curves corresponding to the days represented 
by both x- and y-patterns are used as contexts (variant C). 
Worse results were obtained in variant B, where the context 
vector only consists of temperatures for the forecasted day. 
And the least impact on the forecast accuracy was 
observed when the context consists of temperatures for the 
day represented by x-pattern (variant A).  
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Table 2. MAPE of next day load forecasts created by models for all datasets. 

Model 
PL BE NE TX 

workday weekend holiday workday weekend holiday workday weekend holiday workday weekend holiday 

Naïve 4,02 4,11 24,61 5,18 4,73 18,51 6,59 7,08 7,14 11,88 10,55 10,38

WD 1,66 1,75 15,04 2,84 3,12 12,54 3,26 3,16 6,78 4,82 4,99 6,59
WD A 1,66 1,75 15,71 2,84 3,12 12,34 3,22 3,16 7,03 4,68 4,86 7,08

WD B 1,67 1,75 16,17 2,82 3,02 12,41 3,03 3,02 6,78 4,20 4,44 6,17

WD C 1,67 1,75 16,17 2,82 3,02 12,41 2,91 2,95 7,03 4,05 4,28 6,29

DT 1,56 1,76 4,39 2,87 3,12 4,10 3,08 3,16 6,47 4,46 4,98 7,62
DT A 1,55 1,76 4,45 2,87 3,12 4,26 3,01 3,15 6,47 4,35 4,84 7,62

DT B 1,55 1,76 4,44 2,88 3,03 4,24 2,67 3,02 6,47 3,68 4,44 7,62

DT C 1,55 1,76 4,44 2,88 3,03 4,24 2,41 2,92 6,47 3,43 4,31 7,62

WDT1 1,66 1,75 4,36 2,84 3,12 4,05 3,26 3,16 6,45 4,82 4,99 7,54
WDT1 A 1,66 1,75 4,39 2,84 3,12 4,19 3,22 3,16 6,45 4,68 4,86 7,61

WDT1 B 1,67 1,75 4,37 2,82 3,02 4,15 3,03 3,02 6,45 4,20 4,44 7,54

WDT1 C 1,67 1,75 4,38 2,82 3,02 4,15 2,91 2,95 6,45 4,05 4,28 7,61

WDT2 1,56 1,76 15,00 2,87 3,12 12,23 3,08 3,16 6,36 4,46 4,98 6,15
WDT2 A 1,55 1,76 15,15 2,87 3,12 12,61 3,01 3,15 6,35 4,35 4,84 6,90

WDT2 B 1,55 1,76 15,96 2,88 3,03 12,40 2,67 3,02 6,36 3,68 4,44 6,05

WDT2 C 1,55 1,76 15,54 2,88 3,03 12,40 2,41 2,92 6,36 3,43 4,31 6,20
 
 

 
The biggest improvement was obtained by models DT and 
WDT2. With weather extension of type C, MAPE of models 
DT and WDT2 for NE dataset was reduced from 3.08% to 
2.41% (workdays) and from 3.16% to 2.92% (weekends). 
For TX dataset, reduction was from 4.46% to 3.43% 
(workdays) and from 4.99% to 4.28% (weekends). 
Simultaneously, accuracy of forecasts for holidays seem to 
obtain no benefits from introduction of exogenous variables. 
Some of the model variants gave a little better results after 
this introduction, but results of other ones worsened with no 
visible regularity. 
 
Conclusions 
 In this paper we propose a k-nearest neighbour model 
with exogenous variables representing weather factors to a 
problem of electricity demand forecasting in short horizons. 
Weather factors are represented by contexts of forecast 
patterns. Contexts are taken into account in selection of the 
nearest neighbours.  
 In application examples extended model provides 
noteworthy improvement in forecasts for two of four 
considered datasets and it seems to be some pattern in this 
result. The scatter plots (Fig.1) demonstrate, that the power 
systems which are the source of data can be assigned to 
two groups. The first one is characterized by more linear 
temperature-demand relationship (PL and BE) and the 
second one is characterized by strong nonlinearity in this 
relationship, possibly due to much bigger participation of 
cooling component in the overall demand (NE and TX). An 
increase in the forecast accuracy was achieved only for the 
latter group. For such temperature-sensitive power 
systems, we can conclude that forecasting accuracy can be 
improved by temperature contexts. The biggest 
improvement occurred when contexts represented the 
temperatures for the forecasted day. But even in the case of 
using past temperatures (for the day corresponding to input 
x-pattern) as a context, improving was observed. In our 
study we used real temperatures for the forecasted day 
which in fact are not known in the moment of forecasting. In 
practice the forecasted temperatures are used. This leads 
to deterioration in the model quality caused by inaccuracy in 
temperature forecasting. So we can expect worse results 
for variants B and C than presented in Table 1. 

 Another difference between two groups of datasets is 
that PL and BE demonstrate noticeable differences 
between demand during holidays and regular days. Models 
trying to handle holidays in a regular manner, searching 
neighbours among days of the same weekday (WD and 
WDT2) were failing badly. Results for NE and TX exhibit 
opposite tendency. Holidays’ forecasts created by WD and 
WDT2 models (looking for weekday rather than type of day) 
were not worse, but even a little better in many cases than 
those of models DT and WDT1.  
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