
66 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 4/2017

Grzegorz DUDEK

Czestochowa University of Technology, Department of Electrical Engineering

doi:10.15199/48.2017.04.17

Stochastic Optimization Algorithms for Learning GRNN
Forecasting Model – Comparative Study

Abstract. This paper presents stochastic optimization algorithms for learning Generalized Regression Neural Network which is used as a pattern-
based short-term load forecasting model. For adjustment of the model parameters four types of stochastic optimization methods are used: evolution
strategies, differential evolution, particle swarm optimization and tournament searching. The learning effectiveness when using these four algorithms
is compared on real power system load data.

Streszczenie. W artykule zaprezentowano stochastyczne algorytmy uczenia sieci neuronowej regresji uogólnionej, która pełni funkcję modelu
krótkoterminowego prognozowania obciążeń elektroenergetycznych. Do strojenia parametrów modelu użyto czterech metod optymalizacji
stochastycznej: strategii ewolucyjnych, ewolucji różnicowej, optymalizacji rojem cząstek i przeszukiwania turniejowego. Efektywność tych metod w
uczeniu sieci porównano w badaniach symulacyjnych przy użyciu rzeczywistych danych. (Stochastyczne algorytmy optymalizacji do uczenia
modelu prognostycznego opartego na sieci GRNN – badania porównawcze).

Keywords: stochastic optimization algorithms, Generalized Regression Neural Network, short-term load forecasting.
Słowa kluczowe: stochastyczne metody optymalizacji, sieć neuronowa regresji uogólnionej, prognozowanie krótkoterminowe obciążeń.

Introduction
 The main problem in building forecasting models is
estimation of their parameter values. This is optimization
problem in which the model error and sometimes the model
complexity is minimized. Selection of the model optimization
or learning method is related to the parameter types and the
properties of the objective function. Linear objective function
does not cause major problems. The simplex method,
universal for this case, leads to the global minimum. If an
objective function is nonlinear but continuous and
differentiable, such as in multilayer perceptron, which is
widely used as a forecasting model, gradient-based
methods can be used, which unfortunately are suboptimal.
Gradientless methods (direct search) do not require the
differentiability of the objective function, but are still
suboptimal. Selection of discrete parameter values (e.g.
number of neurons) is performed using exhaustive
enumeration, if the search space size is low. For spaces of
bigger sizes the problem can be decomposed or the size
can be reduced (dynamic programming, branch and bound
method).
 In recent years nature-inspired stochastic optimization
methods, such as evolutionary algorithms and particle
swarm optimization, are developed for solving many hard
engineering problems. They are used for any kind of
optimization problems: combinatorial, continuous, mixed,
with constraints, multi-objective, dynamic, etc. The main
feature of these methods is global optimization property,
which allows the searching process to escape from the local
minimum trap. In this work several stochastic optimization
algorithms are tested for learning the forecasting model
based on Generalized Regression Neural Network.

GRNN forecasting model
 Generalized Regression Neural Network (GRNN)
proposed by Specht [1] is a kind of Radial Basis Function
(RBF) memory-based neural network with a one pass
learning algorithm and highly parallel structure. It provides
smooth function approximation with sparse data in a
multidimensional space. Fast learning and easy tuning are
the greatest advantages of GRNN.
 The GRNN architecture is shown in Fig. 1. It is
composed of four layers: input, RBF, summation and output
ones. Input data are nonlinearly transformed by radial basis
activation functions which usually have the form of
Gaussian functions:

(1) 











 


2

2

exp)(
i

i
i

s
G

cx
x

where ci is a center vector, si is a bandwidth and ||.|| is a
Euclidean norm.
 Each RBF neuron represents one training pattern. Thus,
the number of RBF neurons is equal to the number of
training patterns N. The center of i-th neuron is ci = xi. The
neuron output expresses the similarity between the input
pattern x and the i-th training pattern. The RBF layer maps
n-dimensional input space into N-dimensional space of
similarity. Responses of RBF neurons play the role of
weights of corresponding target patterns yj. The linear
combination of the target patterns is the GRNN output:

(2)







 N

i
i

N

i
ii

G

G
g

1

1

)(

)(
)(

x

yx
x

 An input pattern xi = [xi,1 xi,2 … xi,n] represents a daily
sequence of the load time series: Li = [Li,1 Li,2 … Li,n],
where i is the day number and n is 24 hours. This is
normalized load vector Li:

Fig.1. GRNN architecture

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 4/2017 67

(3)









n

l
ili

iti
ti

LL

LL
x

1

2
,

,
,

)(

where t = 1, 2, ..., n and iL is the mean load of the day i.

 An output pattern yi = [yi,1 yi,2 … yi,n] represents a
forecasted daily load sequence for the day i+:
Li+ = [Li+,1 L i+,2 … Li+,n], where  > 0 is a forecast horizon:

(4)











n

l
ili

iti
ti

LL

LL
y

1

2
,

,
,

)(



 The goal of the time series representation by patterns is
unification of data and filtering out annual and weekly
variations as well as trend. This allows us to simplify the
forecasting problem. More about time series patterns can
be found in [2].
 The GRNN model generates n-dimensional forecasted
y-pattern as an output. To transform this vector into
forecasted load vector Li+ we use transformed equation
(4).
 The only GRNN parameters to be adjusted are
bandwidths sj governing the smoothness of the regression
function (2). As bandwidth becomes larger the RBF neuron
output increase (y-pattern weight in (2) increase), with the
result that the fitted function becomes smoother. To find the
optimal values for bandwidths stochastic optimization
methods are applied described in the next section.

Stochastic optimization algorithms for GRNN learning
 The solution s = [s1, s2, …, sN] is searched to minimize the
forecast error e(s) estimated on the training set (as an error
measure MAPE is used). For this continuous optimization
problem of model fitting four stochastic methods are used
that sample the search space using different heuristics.

Evolution strategies
 In evolution strategies (ES) a population of individuals is
processed. An individual in composed of three elements:
a vector of variables s, a vector of endogenous parameters
 = [1, 2, …, N] and an error function value at the point s:
z = (s, , e(s)). The components of vector  correspond to the
components of the vector s. They control the statistical
properties of the mutation operator. The inclusion of
algorithm parameters to the structure of an individual and
their adaptation in evolutionary process, which takes place
parallel to searching of variables, is a specific feature of ES.
 ES denoted symbolically (/+) [3] is used in this study.
In one step (generation) of ES algorithm,  offsprings are
created from  parents ( > ). To create an offspring, 
parent individuals are selected randomly from the
population. Their features are combined during
recombination using discrete crossover. It performs an
exchange of s and  components between the individuals.
For each position the parent who contributes its component
to the offspring is chosen randomly with equal probability:

(5) r
ii

r
ii ss  ,

where i = 1, 2, ..., N and r = rand{1, 2, …, } is an parent
index.
 The second genetic operator is mutation. In the first
phase vectors  of each offspring are mutated:

(6))]exp(...,),exp(),exp()[exp(' 210  Nσ

where: 0 and  are random numbers drawn from normal

distributions: 0 ~))2(,0(N 5.0N and  ~))2(,0(N 5.05.0 N .

 In the next step vectors of variables s are mutated using
new values of parameters 'i:

(7)]...,,,[' 2211 NNsss  s

where i ~ N(0, 'i), i = 1, 2, ..., N.
 While mutation of parameters i consists in multiplying
their values by random numbers from log-normal
distribution, mutation of variables si consist in adding to their
values random numbers from normal distribution with
standard deviation 'i. Individuals learn correct values of
parameters i in an evolutionary process, adjusting them to
the current state of the search process. In the initial stage of
the search they take higher values, which will ensure
increased exploration of the solution space. When the
promising regions are identified, intensive exploration is no
longer needed. The algorithm searches the space near the
previously found solutions. This requires low values of the
mutation parameters i.
 In the next step error function value e(s) for each
offspring is determined. Then population of parents and
offsprings are combined and  best individuals are selected.
These individuals are parents in the next generation. These
steps repeat until a stop criterion is met.

Differential evolution
 Differential evolution (DE) is a heuristic algorithm for
global optimization over continuous spaces [4], which is
considered as the one of the most powerful stochastic
optimization method [5]. In DE differences of the solution
vectors are employed to explore the solution space. In our
case solution vectors are s. Populations of solution vectors
(individuals) are processed in evolutionary process using
mutation and crossover operators. Mutation consists of
generating a mutant for each individual. A mutant for i-th
individual is formed by adding a weighted difference
between two randomly selected individuals to a third one:

(8))(lkji F sssm 

where: j, k, l  {1, 2, …, M}\i are randomly selected indexes
(different from each other), M is a population size and
F  [0, 2] is a coefficient controlling a mutation range.
 The i-th individual is combined with a mutant generated
for it using discrete crossover of the form:

(9)
otherwise ,

or if,
'

,

,,

,




 


qi

iqiqi

qi s

qCRm
s



where: q = 1, 2, …, N, i,q is a random number from uniform
distribution U(0, 1), i = rand{1, 2, …, N} is a randomly
chosen index which ensures that the new solution gets at
least one component of the mutant mi, and CR  [0, 1] is a
crossover constant.
 An offspring s'i = [s'i,1, s'i,2, …, s'i,N], created as a result of
mutation and crossover, replaces its parent si, if its error is
lower than the parent error: e(s') < e(s). The mutation,
crossover and replacement steps are repeated until a stop
criterion is met.

Particle swarm optimization
 Particle swarm optimization (PSO) is a stochastic,
population-based, global optimization strategy that mimics
social behavior of birds [6]. Individual birds in a flock
(swarm) exchange information concerning their position,
velocity and fitness. The flock behavior is influenced to
increase the probability of migration to regions of high
fitness.

68 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 4/2017

 PSO optimizes a problem using a population of
candidate solutions (particles) and moving them around in
the search space updating their positions and velocities. A
particle movement depends on its velocity vector which is
accelerated toward particle previous best position (where it
had its lowest error value) and toward a swarm best
position (the position of lowest error by any particle). In our
problem the position of each particle is represented by the
vector s. New position of a particle is determined according
to the formula:

(10) '' vss 

where v' is a particle velocity updated according to the
formula [7]:

(11))]()([' **
22

*
11 ssζssζvv  cc

where s* is the position with the lower error found so far for
the particle, s** is the position with the lower error found so
far for the swarm,  is the constriction factor, c1 and c2 are

the acceleration coefficients, 1 and 2 are two
N-dimensional vectors of uniformly distributed random
numbers independently generated within [0, 1], and  is the
multiplication operator of the corresponding vector
components.

Tournament searching
 Tournament searching (TS) was designed for
combinatorial optimization as an alternative to more
complex stochastic algorithms such as genetic algorithm
and simulated annealing [8]. It was expanded to continuous
optimization problems and mixed binary-continuous
problems (see [9], where TS was used for optimization of
the forecasting model based on Nadaraya-Watson
estimator).
 Starting from the initial solution s, TS explores the
search space generating new trial solutions by perturbing
the parent solution. In each iteration a set of L candidate
solutions is generated from the parent solution using a
move (or mutation) operator defined in the same manner as
in ES (7), where i ~ N(0, ). The standard deviation 
controls the range of mutation. Its value decreases during
the search process form a to 0 according to the formula:

(12) 









)ln(

)ln(
1

maxI

i
a

where i is the iteration counter, Imax is the total number of
iterations, a > 0 is a constant selected experimentally
depending on values of variables si.
 In the next step L candidate solutions are evaluated and
the best one among them is selected (one with the lowest
error e(s)). It becomes the parent solution in the next
iteration.
 The L parameter (called the tournament size) and the
standard deviation  control exploration/exploitation
properties of the algorithm. For large L local minima attracts
the searching process more intensively. For smaller L the
probability of escaping from the attraction basin of local
minima increases. But in this case the searching process is
more random. The standard deviation  determines the
length of jumps, i.e. the distance between the parent
solution and the candidate solutions generated from it.

Experimental evaluation
 In this section, the proposed stochastic optimization
algorithms for GRNN learning are evaluated experimentally
in a number of forecasting tasks. By a forecasting task we
mean: learn the GRNN model for forecasting the Polish

power system load curve for the next day ( = 1). The test
set for which the models are learned contains 61 days: 30
days from January 2004 (without atypical 1 January) and 31
days from July 2004. The training samples are selected
individually for each forecasting task from the period from 1
January 2002 to the day preceding the forecasted day.
They include pairs of patterns (xi, yi), where yi represents
the same day of the week (Monday, ..., Sunday) as the
forecasted day.
 Settings of the algorithms were as follows:

ES:  = 30,  = 2 i  = 7. Initial values of parameters i
was set to 0.06d5, where d5 is the mean Euclidean
distance between patterns x and their 5-th nearest
neighbors in the training set.

DE: CR = 0.1, F = 0.1 (values recommended in [9], where
DE was examined on the same forecasting tasks),

PSO:  = 0.729, c1 = c2 = 2.05 (values recommended in [7]).
Initial values of velocities was generated randomly
form the range [–vmax vmax], where vmax = 0.12d5. If
velocity value vi generated according to (11) is
higher than vmax, it is set to vmax, and if it is lower than
–vmax, it is set to –vmax.

TS: L = 210, a = 0.12d5.
M

A
P

E
va

l, %

Fig.2. Convergence curves

Fig.3. Error distribution

Fig.4. Solutions found by the algorithms for the last forecasting task
(31 July 2004)

 The population size in all cases was M = 210 and the
total number of iterations was Imax = 200. Components si of
the initial solutions were generated randomly from the range

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 4/2017 69

[0 1.2d5]. The GRNN accuracy during training was evaluated
in the local leave-one-out procedure, in which the validation
samples are selected one by one from the set of 12 nearest
neighbors of the current input test pattern. The mean error
on validation samples (MAPEval) is expected to be a good
estimate of the error on test sample (MAPEtst).
 The convergence curves of the algorithms in Fig. 2 are
presented. DE converges noticeably slower than other
algorithms. The fastest convergence is observed for TS and
PSO.
 The error distribution (daily MAPE) is shown in Fig. 3.
Note very similar distributions for TS, ES and PSO.
 Solutions returned by the algorithms differ from each
other. This is illustrated in Fig. 4, where the best solutions s
found by the algorithms for one of the forecasting task is
shown. For 61 forecasting tasks in 32 cases TS brought
best results among all algorithms, ES in 15 cases, PSO in
14 cases, and DE did not bring a best result in any case.
 Mean errors achieved on the validation samples and
test samples in Table 1 are shown. As can be seen from
this table, the best results for the validation samples do not
translate into the best results for the test samples. This is
because insufficient information about the target function
hidden in the training points which are sparse distributed in
n-dimensional space.

Table 1. Forecasting errors
Method MAPEval, % MAPEtst, %

ES 0.94 1.34
DE 1.04 1.08

PSO 0.93 1.18
TS 0.93 1.20

Conclusions
 In this work GRNN model for load time series
forecasting is learned using four stochastic optimization
methods. Ability to escape from the traps of local minima to
search for the global minimum is an important feature of
these methods. However, they are usually very sensitive to
their parameters and tuning the parameters is difficult,
tedious and problem dependent. Evolution strategy, particle
swarm optimization and tournament searching

demonstrated similar effectiveness and showed the fastest
convergence towards the solution.
 It is worth noting, that tournament searching is the
simplest one among examined stochastic optimization
methods. It has an efficient and flexible algorithm which can
be adapted to combinatorial, continuous and mixed
optimization. In continuous version it has only two
parameters controlling the global/local searching properties
of the algorithm: the tournament size and the standard
deviation used for generating trial solutions.

Author: Grzegorz Dudek PhD, DSc, Czestochowa University of
Technology, Institute of Computer Science, al. Armii Krajowej 17,
42-200 Czestochowa, Poland, E-mail: Dudek@el.pcz.czest.pl.

REFERENCES
[1] Spech t D .F . , A General Regression Neural Network, IEEE

Transactions on Neural Networks, 2 (1991), No. 6, 568-576
[2] Dudek G. , Pattern Similarity-based Methods for Short-term

Load Forecasting – Part 1: Principles, Applied Soft Computing,
37 (2015), 277-287

[3] Beyer H .G. , Schwefe l H .P . , Evolution Strategies - A
Comprehensive Introduction, Natural Computing, 1 (2002), No.
1, 3-52

[4] S to rn R . , P r i ce K . , Differential Evolution – A Simple and
Efficient Heuristic for Global Optimization over Continuous
Spaces, Journal of Global Optimization 11 (1997), No. 4, 341-
359

[5] Das S . , Sugan than P .N . , Differential Evolution: A Survey
of the State-of-the-Art, IEEE Transactions on Evolutionary
Computation 15 (2011), No. 1, 4-31

[6] Eberhar t R . C . , Sh i Y. H . , Particle Swarm Optimization:
Developments, Applications and Resources, Proc. IEEE Congr.
Evol. Comput. (2001), 81-86

[7] Eberhar t R . C . , Sh i Y. H . , Comparing Inertia Weights
and Constriction Factors in Particle Swarm Optimization, Proc.
IEEE Congr. Evol. Comput. (2000), 84-88

[8] Dudek G. , Tournament Searching Method to Feature
Selection Problem, Proc. Artificial Intelligence and Soft
Computing, LNCS 6114, (2010), 437-444

[9] Dudek G. , Tournament Searching Method for Optimization of
the Forecasting Model Based on the Nadaraya-Watson
Estimator, Proc. Artificial Intelligence and Soft Computing,
LNCS 8468, (2014), 351-360

