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Abstract. This paper presents stochastic optimization algorithms for learning Generalized Regression Neural Network which is used as a pattern-
based short-term load forecasting model. For adjustment of the model parameters four types of stochastic optimization methods are used: evolution 
strategies, differential evolution, particle swarm optimization and tournament searching. The learning effectiveness when using these four algorithms 
is compared on real power system load data. 
 
Streszczenie. W artykule zaprezentowano stochastyczne algorytmy uczenia sieci neuronowej regresji uogólnionej, która pełni funkcję modelu 
krótkoterminowego prognozowania obciążeń elektroenergetycznych. Do strojenia parametrów modelu użyto czterech metod optymalizacji 
stochastycznej: strategii ewolucyjnych, ewolucji różnicowej, optymalizacji rojem cząstek i przeszukiwania turniejowego. Efektywność tych metod w 
uczeniu sieci porównano w badaniach symulacyjnych przy użyciu rzeczywistych danych. (Stochastyczne algorytmy optymalizacji do uczenia 
modelu prognostycznego opartego na sieci GRNN – badania porównawcze). 
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Introduction 
 The main problem in building forecasting models is 
estimation of their parameter values. This is optimization 
problem in which the model error and sometimes the model 
complexity is minimized. Selection of the model optimization 
or learning method is related to the parameter types and the 
properties of the objective function. Linear objective function 
does not cause major problems. The simplex method, 
universal for this case, leads to the global minimum. If an 
objective function is nonlinear but continuous and 
differentiable, such as in multilayer perceptron, which is 
widely used as a forecasting model, gradient-based 
methods can be used, which unfortunately are suboptimal. 
Gradientless methods (direct search) do not require the 
differentiability of the objective function, but are still 
suboptimal. Selection of discrete parameter values (e.g. 
number of neurons) is performed using exhaustive 
enumeration, if the search space size is low. For spaces of 
bigger sizes the problem can be decomposed or the size 
can be reduced (dynamic programming, branch and bound 
method).  
 In recent years nature-inspired stochastic optimization 
methods, such as evolutionary algorithms and particle 
swarm optimization, are developed for solving many hard 
engineering problems. They are used for any kind of 
optimization problems: combinatorial, continuous, mixed, 
with constraints, multi-objective, dynamic, etc. The main 
feature of these methods is global optimization property, 
which allows the searching process to escape from the local 
minimum trap. In this work several stochastic optimization 
algorithms are tested for learning the forecasting model 
based on Generalized Regression Neural Network.  
 

GRNN forecasting model 
 Generalized Regression Neural Network (GRNN) 
proposed by Specht [1] is a kind of Radial Basis Function 
(RBF) memory-based neural network with a one pass 
learning algorithm and highly parallel structure. It provides 
smooth function approximation with sparse data in a 
multidimensional space. Fast learning and easy tuning are 
the greatest advantages of GRNN.  
 The GRNN architecture is shown in Fig. 1. It is 
composed of four layers: input, RBF, summation and output 
ones. Input data are nonlinearly transformed by radial basis 
activation functions which usually have the form of 
Gaussian functions:  
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where ci is a center vector, si is a bandwidth and ||.|| is a 
Euclidean norm. 
 Each RBF neuron represents one training pattern. Thus, 
the number of RBF neurons is equal to the number of 
training patterns N.  The center of i-th neuron is ci = xi. The 
neuron output expresses the similarity between the input 
pattern x and the i-th training pattern. The RBF layer maps 
n-dimensional input space into N-dimensional space of 
similarity. Responses of RBF neurons play the role of 
weights of corresponding target patterns yj. The linear 
combination of the target patterns is the GRNN output: 
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 An input pattern xi = [xi,1 xi,2 … xi,n] represents a daily 
sequence of the load time series:  Li = [Li,1 Li,2 … Li,n], 
where i is the day number and n is 24 hours. This is 
normalized load vector Li: 
 

 
 
Fig.1. GRNN architecture 
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where t = 1, 2, ..., n and iL  is the mean load of the day i. 

 An output pattern yi = [yi,1 yi,2 … yi,n] represents a 
forecasted daily load sequence for the day i+:  
Li+ = [Li+,1 L i+,2 … Li+,n], where  > 0 is a forecast horizon:  
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 The goal of the time series representation by patterns is 
unification of data and filtering out  annual and weekly 
variations as well as trend. This allows us to simplify the 
forecasting problem.  More about time series patterns can 
be found in [2]. 
 The GRNN model generates n-dimensional forecasted 
y-pattern as an output. To transform this vector into 
forecasted load vector  Li+  we use transformed equation 
(4). 
 The only GRNN parameters to be adjusted are 
bandwidths sj governing the smoothness of the regression 
function (2). As bandwidth becomes larger the RBF neuron 
output increase (y-pattern weight in (2) increase), with the 
result that the fitted function becomes smoother. To find the 
optimal values for bandwidths stochastic optimization 
methods are applied described in the next section. 
 

Stochastic optimization algorithms for GRNN learning 
 The solution s = [s1, s2, …, sN] is searched to minimize the 
forecast error e(s) estimated on the training set (as an error 
measure MAPE is used). For this continuous optimization 
problem of model fitting four stochastic methods are used 
that sample the search space using different heuristics.    
 

Evolution strategies 
 In evolution strategies (ES) a population of individuals is 
processed. An individual in composed of three elements:  
a vector of variables s, a vector of endogenous parameters 
 = [1, 2, …, N] and an error function value at the point s:  
z = (s, , e(s)). The components of vector  correspond to the 
components of the vector s. They control the statistical 
properties of the mutation operator. The inclusion of 
algorithm parameters to the structure of an individual and 
their adaptation in evolutionary process, which takes place 
parallel to searching of variables, is a specific feature of ES.  
 ES denoted symbolically (/+) [3] is used in this study. 
In one step (generation) of ES algorithm,  offsprings are 
created from  parents ( > ). To create an offspring,  
parent individuals are selected randomly from the 
population. Their features are combined during 
recombination using discrete crossover. It performs an 
exchange of s and  components between the individuals. 
For each position the parent who contributes its component 
to the offspring is chosen randomly with equal probability: 
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where i = 1, 2, ..., N and r = rand{1, 2, …, } is an parent 
index. 
 The second genetic operator is mutation. In the first 
phase vectors  of each offspring are mutated: 
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where: 0 and  are random numbers drawn from normal 

distributions: 0 ~ ))2(,0(N 5.0N and  ~ ))2(,0(N 5.05.0 N . 

 In the next step vectors of variables s are mutated using 
new values of parameters 'i:  
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where i ~ N(0, 'i), i = 1, 2, ..., N. 
 While mutation of parameters i consists in multiplying 
their values by random numbers from log-normal 
distribution, mutation of variables si consist in adding to their 
values random numbers from normal distribution with 
standard deviation 'i. Individuals learn correct values of 
parameters i in an evolutionary process, adjusting them to 
the current state of the search process. In the initial stage of 
the search they take higher values, which will ensure 
increased exploration of the solution space. When the 
promising regions are identified, intensive exploration is no 
longer needed. The algorithm searches the space near the 
previously found solutions. This requires low values of the 
mutation parameters i. 
 In the next step error function value e(s) for each 
offspring is determined. Then population of parents and 
offsprings are combined and  best individuals are selected. 
These individuals are parents in the next generation. These 
steps repeat until a stop criterion is met.  
 

Differential evolution 
 Differential evolution (DE) is a heuristic algorithm for 
global optimization over continuous spaces [4], which is  
considered as the one of the most powerful stochastic 
optimization method [5]. In DE differences of the solution 
vectors are employed to explore the solution space. In our 
case solution vectors are s. Populations of solution vectors 
(individuals) are processed in evolutionary process using 
mutation and crossover operators. Mutation consists of 
generating a mutant for each individual. A mutant for i-th 
individual is formed by adding a weighted difference 
between two randomly selected individuals to a third one: 
 

(8)        )( lkji F sssm   
 

where: j, k, l  {1, 2, …, M}\i are randomly selected indexes 
(different from each other), M is a population size and  
F  [0, 2] is a coefficient controlling a mutation range. 
 The i-th individual is combined with a mutant generated 
for it using discrete crossover of the form: 
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where: q = 1, 2, …, N, i,q is a random number from uniform 
distribution U(0, 1), i = rand{1, 2, …, N} is a randomly 
chosen index which ensures that the new solution gets at 
least one component of the mutant mi, and CR   [0, 1] is a 
crossover constant. 
 An offspring s'i  = [s'i,1, s'i,2, …, s'i,N], created as a result of 
mutation and crossover, replaces its parent si, if its error is 
lower than the parent error: e(s') < e(s). The mutation, 
crossover and replacement steps are repeated until a stop 
criterion is met. 
 

Particle swarm optimization 
 Particle swarm optimization (PSO) is a stochastic, 
population-based, global optimization strategy that mimics 
social behavior of birds [6]. Individual birds in a flock 
(swarm) exchange information concerning their position, 
velocity and fitness. The flock behavior is influenced to 
increase the probability of migration to regions of high 
fitness.  
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 PSO optimizes a problem using a population of 
candidate solutions (particles) and moving them around in 
the search space updating their positions and velocities. A 
particle movement depends on its velocity vector which is 
accelerated toward particle previous best position (where it 
had its lowest error value) and toward a swarm best 
position (the position of lowest error by any particle). In our 
problem the position of each particle is represented by the 
vector s. New position of a particle is determined according 
to the formula:  
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where v' is a particle velocity updated according to the 
formula [7]:  
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where s* is the position with the lower error found so far for 
the particle, s** is the position with the lower error found so 
far for the swarm,  is the constriction factor, c1 and c2 are 

the acceleration coefficients, 1 and 2 are two  
N-dimensional vectors of uniformly distributed random 
numbers independently generated within [0, 1], and  is the 
multiplication operator of the corresponding vector 
components. 
 

Tournament searching 
 Tournament searching (TS) was designed for 
combinatorial optimization as an alternative to more 
complex stochastic algorithms such as genetic algorithm 
and simulated annealing [8]. It was expanded to continuous 
optimization problems and mixed binary-continuous 
problems (see [9], where TS was used for optimization of 
the forecasting model based on Nadaraya-Watson 
estimator).  
 Starting from the initial solution s, TS explores the 
search space generating new trial solutions by perturbing 
the parent solution. In each iteration a set of L candidate 
solutions is generated from the parent solution using a 
move (or mutation) operator defined in the same manner as 
in ES (7), where i ~ N(0, ). The standard deviation  
controls the range of mutation. Its value decreases during 
the search process form a to 0 according to the formula: 
 

(12)    









)ln(

)ln(
1

maxI

i
a  

where i is the iteration counter, Imax is the total number of 
iterations, a > 0 is a constant selected experimentally 
depending on values of variables si. 
 In the next step L candidate solutions are evaluated and 
the best one among them is selected (one with the lowest 
error e(s)). It becomes the parent solution in the next 
iteration.  
 The L parameter (called the tournament size) and the 
standard deviation  control exploration/exploitation 
properties of the algorithm. For large L local minima attracts 
the searching process more intensively. For smaller L the 
probability of escaping from the attraction basin of local 
minima increases. But in this case the searching process is 
more random. The standard deviation  determines the 
length of jumps, i.e. the distance between the parent 
solution and the candidate solutions generated from it.  

 

Experimental evaluation 
 In this section, the proposed stochastic optimization 
algorithms for GRNN learning are evaluated experimentally 
in a number of forecasting tasks. By a forecasting task we 
mean: learn the GRNN model for forecasting the Polish 

power system load curve for the next day ( = 1). The test 
set for which the models are learned contains 61 days: 30 
days from January 2004 (without atypical 1 January) and 31 
days from July 2004. The training samples are selected 
individually for each forecasting task from the period from 1 
January 2002 to the day preceding the forecasted day. 
They include pairs of patterns (xi, yi), where yi represents 
the same day of the week (Monday, ..., Sunday) as the 
forecasted day. 
 Settings of the algorithms were as follows:  

ES:   = 30,  = 2 i  = 7. Initial values of parameters i 
was set to 0.06d5, where d5 is the mean Euclidean 
distance between patterns x and their 5-th nearest 
neighbors in the training set. 

DE:  CR = 0.1, F = 0.1 (values recommended in [9], where 
DE was examined on the same forecasting tasks),  

PSO:  = 0.729, c1 = c2 = 2.05 (values recommended in [7]). 
Initial values of velocities was generated randomly 
form the range [–vmax vmax], where vmax = 0.12d5. If 
velocity value vi generated according to (11) is 
higher than vmax, it is set to vmax, and if it is lower than 
–vmax, it is set to –vmax. 

TS:  L = 210, a = 0.12d5. 
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Fig.2. Convergence curves 
 

 
 

Fig.3. Error distribution 
 

 
 
Fig.4. Solutions found by the algorithms for the last forecasting task 
(31 July 2004) 
 
 The population size in all cases was M = 210 and the 
total number of iterations was  Imax = 200. Components si of 
the initial solutions were generated randomly from the range 
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[0 1.2d5]. The GRNN accuracy during training was evaluated 
in the local leave-one-out procedure, in which the validation 
samples are selected one by one from the set of 12 nearest 
neighbors of the current input test pattern. The mean error 
on validation samples (MAPEval) is expected to be a good 
estimate of the error on test sample (MAPEtst).  
 The convergence curves of the algorithms in Fig. 2 are 
presented. DE converges noticeably slower than other 
algorithms. The fastest convergence is observed for TS and 
PSO. 
 The error distribution (daily MAPE) is shown in Fig. 3. 
Note very similar distributions for TS, ES and PSO. 
 Solutions returned by the algorithms differ from each 
other. This is illustrated in Fig. 4, where the best solutions s 
found by the algorithms for one of the forecasting task is 
shown. For 61 forecasting tasks in 32 cases TS brought 
best results among all algorithms, ES in 15 cases, PSO in 
14 cases, and DE did not bring a best result in any case.  
 Mean errors achieved on the validation samples and 
test samples in Table 1 are shown. As can be seen from 
this table, the best results for the validation samples do not 
translate into the best results for the test samples. This is 
because insufficient information about the target function 
hidden in the training points which are sparse distributed in 
n-dimensional space.   
 

Table 1. Forecasting errors 
Method MAPEval, % MAPEtst, % 

ES 0.94 1.34 
DE 1.04 1.08 

PSO 0.93 1.18 
TS 0.93 1.20 

 
Conclusions 
 In this work GRNN model for load time series 
forecasting is learned using four stochastic optimization 
methods. Ability to escape from the traps of local minima to 
search for the global minimum is an important feature of 
these methods. However, they are usually very sensitive to 
their parameters and tuning the parameters is difficult, 
tedious and problem dependent. Evolution strategy, particle 
swarm optimization and tournament searching 

demonstrated similar effectiveness and showed the fastest 
convergence towards the solution. 
 It is worth noting, that tournament searching is the 
simplest one among examined stochastic optimization 
methods. It has an efficient and flexible algorithm which can 
be adapted to combinatorial, continuous and mixed 
optimization. In continuous version it has only two 
parameters controlling the global/local searching properties 
of the algorithm: the tournament size and the standard 
deviation used for generating trial solutions. 
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