
6 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 4/2017

Zuzanna KRAWCZYK, Jacek STARZYŃSKI

Politechnika Warszawska, Wydział Elektryczny

doi:10.15199/48.2017.04.02

Parallel implementation of the Artificial Ant Colony Algorithm
applied to medical images segmentation

Abstract. Artificial Ant Colony algorithm (AAC) can be applied to segmentation of bone structures out of CT data series. AAC procedure produces
promising results in regions of adjacent bones and joints which are hard to distinguished by common segmentation algorithms. The article presents
parallel implementation of the AAC which allows for significant speed-up of the segmentation procedure. The results of the segmentation for various
bone structures in the area of the human pelvis are presented.

Streszczenie. Algorytm kolonii mrówkowej (AAC) pozwala na segmentację struktur kostnych z serii obrazów tomografii komputerowej. AAC daje
obiecujące wyniki dla przylegających do siebie fragmentów kości i stawów, które trudno rozróżnić przy pomocy często używanych filtrów obrazu.
Artykuł przedstawia równoległą implementację algorytmu pozwalającą znacznie przyspieszyć operację segmentacji. Zaprezentowano w nim wyniki
algorytmu dla wybranych struktur kostnych w obrębie miednicy. (Równoległa implementacja algorytmu mrówkowego zastosowanego do
segmentacji obrazów medycznych).

Keywords: image processing, artificial ant colony algorithm, parallel programming, CT.
Słowa kluczowe: przetwarzanie obrazu, algorytm mrówkowy, programowanie równoległe, CT.

Introduction
 Automatic segmentation of medical images is a widely
investigated yet not fully solved problem [1]. Techniques
that are often applied to the segmentation of computer
tomography images include: threshold based, edge
detection based, region growing based, deformable model
based, fuzzy based or neural network based methods [2, 3].
Most of the above mentioned techniques (except
straightforward threshold based segmentation and edge
detection algorithms) need prior initialization by an expert
user or extensive training on prepared data set.
 Cortical parts of bone structures are easily recognizable
in CT images due to their high radiodensity. Therefore they
can be easily segmented by threshold based algorithms.
Trabecular bone regions near the bones boundaries (e.g.
the area of hip joint) are much harder to distinguish. Thus,
the segmentation result contains often several different
bone structures in one region.
 The heuristic, iterative method of the Artificial Ant
Colony Algorithm (AAC), belonging to the swarm
intelligence class of algorithms, delivers promising results in
the case of 'difficult' image segmentation described above.
However the successful application of the method requires
to perform a large number of iterations and thus it is time
consuming. The article presents parallel implementation of
the AAC [4, 5, 6] with which significant speed-up in
comparison to the sequential version has been achieved.
 The article is organized as follows: In the first section
the idea of the AAC and its version adjusted to the image
segmentation task is presented, in the subsequent chapter
the implementation details of the parallel version are
described. The third section is focused on the example
segmentation results in the area of human pelvis and its
surrounding. The article ends with conclusions and
description of the further work planned.

The Artificial Ant Colony Algorithm
 The AAC, first presented in [4], was initially aimed at
finding the optimal path in the graph. Further studies [5] and
[6] showed the potential of the modified version of the
algorithm for image segmentation and edge detection. The
application of the AAC to the segmentation of lungs
structures was discussed in [7] and in [8] the method was
employed to the hippocampus segmentation.
 The AAC implements a heuristic method inspired by the
behavior of the ant colony. The optimal solution of the

problem is found by the group of agents called “ants”, each
performing simple set of local operations. The agents do not
have any centralized supervisor responsible for their
actions.
 The version of the algorithm employed in the current
paper follows the one described in [6]. In our case, the two-
dimensional, digital image is considered as a search space
on which ant agents are placed and moving. Each ant is
characterized by its current position and direction. In each
iteration of the algorithm, an ant deposits a computed value,
called pheromone, in the cell at which it currently resides.
Values of the pheromone level in the neighborhood of an
ant are the only information exchanged between the agents.
The probability of an ant to move depends on the ant
direction in the previous iteration (it is more probable that
the ant will continue its movement in the same direction
than that it will perform an abrupt turn) and the pheromone
levels deposed in neighboring cells. Unlike in the standard
version of the AAC only one ant can occupy one cell at a
time.
 At the start of the AAC m ants are randomly placed in
the array with size equivalent to the image subject to
segmentation. In the next step in each of the n iterations, for
each ant the following steps are performed:

1. Computation of the possible move directions.
2. Execution of the ant move to one of the

neighboring cells (8 adjacent cells) for which the
move probability is the highest.

3. Pheromone computation and deposition in the
current cell.

After each iteration a small part of the pheromone
evaporates from all the cells. The pheromone deposition
function is given by the equation (1):

(1) T p   ,

where η is a small pheromone value deposed in the cell
after each iteration, p is the importance coefficient of the
delta function and Δ is an author-defined function described
by the equation (2):

(2)
() ()

()
() ()

a if avg f avg w
i

b if avg f avg w


   

,

where avg(f) is the average image intensity, avg(w) is the
average intensity of the window of pixels with i-th pixel

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 4/2017 7

inside of it. The radius of the window is user-defined, a and
b are functions given by the equations (3) and (4):

(3)
()

max()

f i
a round

f

 
  

 
,

(4)
1 () ()

0 () ()

if f i avg w
b

if f i avg w


  

,

where f(i) is the intensity of the current pixel and max(f) is
the maximal intensity of the whole image. Equation (3) is
also the Δ function proposed in [4].
 After the final iteration the pheromone image is
segmented: pixels with the value higher or equal than an
average pheromone value are set to the white color,
whereas rest of the pixels is set to the black color.
 The algorithm implementation was written in the Python
language with the use of numpy module allowing to perform
matrix operations in a more efficient manner. The code was
run on the set of images created out of CT data series with
single image size of 767 on 770 pixels. The average
computation time for single image performed on computer
with Intel(R) Xeon(R) CPU X5460, 3.16GHz with 4 cores is
approximately 435 minutes 54 seconds.
 Profiling operation (performed with the cProfile module)
shows, that most of the computational time is spend in the
method which evaluates delta function and in method
responsible for the movement probability computations.
Detailed information about computations time is presented
in table 1.

Table 1. Profiling results for the image of size 194x189 pixels, 10
algorithm iterations
Procedure Number of

procedure calls
Cumulative
execution time [s]

Whole program 1 25.083
Delta function 109990 11.643
Movement probability 109990 9.959
Ant direction
computation

109990 1.109

Parallel implementation
 In order to speed-up the computation time of the most
time consuming operations the program was redesigned
into its parallel version.
 All of the agents can move along and apply pheromone
in the whole search space of the image. Therefore arrays
containing pheromone values and map of ant positions
should be shared between processes performing
computations.
 The computations are taken in parallel by number of
processes defined by user. The additional method
managing the creation of processes and even ants
distribution along them was written.
 The general scheme of the algorithm can be described as
follows: In the sequential, preparation phase, like in the
original version of the algorithm, ant agents are randomly
placed on the map with a size equivalent to the size of the
image. K objects of the class performing algorithm
computations, called workers, are created and information
about position of ants is copied to the local tables in the
processes. Then, every worker performs its own
computations, synchronizing changes in critical sections. In
each iteration, for every ant in a given worker, following
steps are performed:

1. The ant neighborhood is copied to the local array.
2. Computation of three most probable ant moves is

performed. (The probabilities are ranked in the
descending order.)

3. In the critical section it is checked if ant from
another process has not occupied the neighboring
destination cell to which agent should be moved.

4. If the cell is not occupied, the ant performs its
move. Otherwise the procedure is repeated with
the next probable move on the list. If no move is
available ant stays in place.

5. The shared map of ants positions is updated in
critical section.

6. The pheromone deposition rate is computed.
7. The pheromone map is updated in the critical

section.
Only the update of the pheromone on the global map is
synchronized. The delta function computations are
performed fully in parallel.
 The algorithm parallelization was performed with the use
of multiprocessing [9] module employed for processes
management and ctypes module [10] used in order to
create shared arrays. It is noteworthy, that the usage of
multiprocessing module allows to eliminate the time
overhead generated by the Global Interpreter Lock (GIL) in
Python multithreaded programs.
 The 5.94 times speed-up was achieved for the image of
size 767 on 770 pixels and 5.49 speed-up for the smaller
size of task (image of size of 194 on 189 pixels), for 8
parallel processes. The speed-up is defined as the ratio
between the execution time of the sequential version of the
program and the parallelized one. The details of the parallel
algorithm performance are shown in the tables 2 and 3 for
medium and small size of images respectively. Figure 1
depicts the execution time of the algorithm in the function of
processes number.

Fig. 1. Computation times for the image of size of 767x770 pixels,
lunched for different number of processes on Intel(R) Xeon(R) CPU
X5460 processor

Table 2. Performance statistics for the test image of size 767x770,
200 iterations of the algorithm
Processors
number

Execution
time [min]

Speed-up Sequential
time [min]

Efficiency

Sequential
version

435min 54s - - -

2 232min 28s 1.88 14.51 0.94
4 121min 15s 3.6 12.28 0.9
6 86min 17s 5.05 13.63 0.84
8 73min 20s 5.94 18.84 0.74

Table 3. Performance statistics for the test image of size 194x189,
200 iterations of the algorithm
Processors
number

Execution
time [sec]

Speed-up Sequential
time [sec]

Efficiency

Sequential
version

434 - - -

2 278 1.56 61 0.78
4 141 3.08 32.5 0.77
6 97 4.47 24.7 0.74
8 79 5.49 24.75 0.69

8 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 4/2017

 The more parallel processes run the program, the more
agents from different processes can change the state of the
neighborhood of the ant. Procedure enters the critical
section more often. Thus, the efficiency of the algorithm
(understood as a ratio between the speed-up and number
of parallel processes) is dropping with the greater number
of processes.
 Figure 2 shows the speed-up difference between the
medium and small problem size. The parallelization
procedure is slightly more effective for the larger
computational tasks, which is consistent with the theory.

Fig. 2. Speed-up for medium (767x770 pixels) images – squares
and small (103x125 pixels) images – triangles

Example results
 The algorithm has been tested on the set of images
obtained from the CT data series including the full size
images and smaller cut pieces containing only critical
regions with adjacent bones. The results of the procedure
were compared with other segmentation method - Otsu
thresholding and with Canny edge detection procedure.
 Otsu method calculates optimum threshold separating
pixel classes, in such a way that their intra-class variance is
minimal. In the paper multithreaded Otsu threshold was
used, in order to detect and eliminate from the
segmentation process artificial elements visible on the CT
scans like treatment table or markers, which are brighter
than bones. Canny edge detection is multi-stage, state of
the art, edge detection algorithm, able to detect wide range
of edges in the image. In the computations only the pixels
with intensity values between 70 and 250 were taken into
consideration (again in order to eliminate additional artificial
elements on the image and soft tissue), the pixel values
were normalized to the range between 0 and 255. The
variance used in the Gaussian filter applied at the beginning
of the Canny edge detection procedure was set to 2.0. In
case of both above methods their implementations from
SimpleITK library were employed [10].
 Figure 3 presents cut input data, whereas the results of
the segmentation algorithms are shown at figures 4 and 5.

Fig.3. The original input data: 1) part of ilium and sacrum, 2) femur
bone
 It can be noticed that the segmentation performed with
the use of the AAC is better suited to the detection of bone
edges than other two methods. In case of the Otsu filter

some parts of bones are under or over segmented. The
Canny edge detector filter produces to many additional
edges. AAC is also able to separate two bone structures
placed close to each other.

Fig.4. Ilium cross-section: results of the image processing obtained
with: 1a) AAC, 1b) Otsu segmentation applied to the whole image,
before the piece was cut, 1c) Otsu segmentation applied to the cut
piece, 1d) Canny edge detection

Fig.5. Femur cross-section: results of the image processing
obtained with: 2a) AAC, 2b) Otsu segmentation applied to the
whole image, before the piece was cut, 2c) Otsu segmentation
applied to the cut piece, 2d) Canny edge detection

In case of full size images other structures than bones
were detected by the AAC as well. In order to filter them out
the outcome of the AAC was combined with the results of
other procedures: Otsu thresholding, edge detection
algorithm and AAC with b function (Eq. 4) treated as the
delta function. Only the pixels segmented by 3 out of 4
different algorithms where set visible in the final image. The
result of the procedure is presented at the figure 6.

Fig.6. 1) The result of AAC segmentation, after 100 iterations;
radius of the window of delta function is equal to 5. 2)
Segmentation result after the fusion with other algorithms

Estimation of ants number
 The number of ant agents placed in the search space is
determined as a 30% of the image pixels number,

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 4/2017 9

according to the parameters used in [5]. Too little number of
ants can result in under-segmentation of the image.
Excessive amount of agents unnecessarily increases
computation time, while obtaining similar segmentation
result. Segmentation results obtained with the different
number of ants are presented in the figure 7.

Fig.7. Segmentation result after 200 iterations with the number of
ants equal to: 1) 15% 2) 30% 3) 50% of the pixels number in the
image

 The alternative strategy of determining the number of
ants in the search space was performed. The colony was
modified in such a way that, each ant has its “life force” - LF
attribute, which describe how strong the agent is. At the
beginning of the simulation the attribute is set to the value
of 10, for each ant. If ant has deposed only a little amount of
pheromone (the η factor) in the cell, the LF is decreased by
the value of 0.5 (the ant has not found the food in the
current iteration and it is becoming weaker). If the amount
of the deposed pheromone is bigger than the η factor the LF
is increased by the value of 1 (the ant is getting stronger
and is able to survive by the greater amount of iterations). If
the value of the LF attribute is lower than 0, the ant dies and
is removed from the search space. In such way only the
ants that have reached the neighborhood of the bone
regions are able to survive.
 Figure 8 shows that ants quickly recognize regions to be
segmented, however great amount of ants stays in the
regions without pheromone (out of bone regions).

Fig.8. Ants position at the search space before: 1) first iteration 2)
15 iteration 3) 30 iteration 4) 100 iteration

 In order to obtain good quality of segmentation and
eliminate unproductive ants, the described above strategy
of dying colony was used with the high starting number of
ants (50% of the pixels number). After 20 iterations the
population of ants drops drastically (Fig.9.): for the small
test image from the number of 18333 ants to 7520 ants,
leaving only agents around the bone area. In further
iterations the number of ants drops slightly to the 5880
agents after 200 iterations. The procedure has allowed to

speed-up the computations with the use of 8 parallel
processes, approximately by the factor of 1.38 for small size
images and by the factor of 1.92 for the medium images.

Fig 9. Segmentation procedure with starting number of ants equal
to 50% of pixel numbers. Ants positions after a) 19 iterations b) 20
iterations

Conclusions
 The Artificial Ant Colony algorithm gives promising
results in the area of adjacent bone structures or joints
which are hard to be distinguish by common segmentation
algorithms. The parallel implementation of the algorithm has
shorten its execution time even over 5 times. The
application of the ‘dying-colony’ strategy has improved this
result. In order to obtain further speed-up implementation of
the AAC for the GPU is considered.
 In the future, research on the skeletonization of the
obtained segmentation results will be conducted.

The CT data obtained due to courtesy of Maria
Skłodowska-Curie Memorial Cancer Center.

Authors: mgr inż. Zuzanna Krawczyk, dr hab. inż. Jacek
Starzyński Politechnika Warszawska, Instytut Elektrotechniki
Teoretycznej I Systemów Informacyjno-Pomiarowych, ul.
Koszykowa 75, 00-662 Warszawa, E-mail:
zuzanna.krawczyk@ee.pw.edu.pl, jstar@ee.pw.edu.pl

LITERATURE
[1] Sharma N,, Aggarwal LM., Automated medical image

segmentation techniques. Journal of Medical Physics /
Association of Medical Physicists of India , nr 35 (2010), 3-14

[2] Prasantha H.S. et. al. Medical Image Segmentation,
International Journal on Computer Science and Engineering
(IJCSE), Vol. 02, No. 04 (2010), 1209-1218

[3] McInerney T., Terzopoulos D., Deformable Models in Medical
Image Analysis: A Survey, Medical Image Analysis, 1(2)
(1996), 91-108

[3] M. Dorigo, Optimization, Learning and Natural Algorithms, PhD
thesis, Politecnico di Milano, Italy, (1992)

[4] Ramos V., Almeida F., Artificial Ant Colonies in Digital Image
Habitats - A Mass Behaviour Effect Study on Pattern
Recognition, Proc. of ANTS 2000 - 2nd Int. Works. on Ant
Algorithms (From Ant Colonies to Artificial Ants), Marco Dorigo,
Martin Middendorf, Thomas Stuzle (Eds.), Brussels, Belgium,
7-9 Sep. (2000), 113

[5] A. V. Alvarenga, Artificial Ant Colony: Features and
applications on medical image segmentation, 2011 Pan
American Health Care Exchanges, Rio de Janeiro, (2011), 96-
101

[6] Cerello P. et. al., 3-D object segmentation using ant colonies,
Journal Pattern Recognition, 43 (2010), Issue 4, April, 1476-
1490

[7] Fiorina E., Fully automated hippocampus segmentation with
virtual ant colonies, Computer-Based Medical Systems
(CBMS), 2012 25th International Symposium on;, 978-1-4673-
2049-8 (2012), 1-6

[8] https://docs.python.org/2/library/multiprocessing.html
[9] https://docs.python.org/2/library/ctypes.html
[10] http://www.simpleitk.org/

