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Abstract. The responses of continuous-time and discrete-time linear systems with derivatives of their inputs are addressed. It is shown that the 
formulae for state vectors and outputs are also valid for their derivatives if the inputs and outputs and their derivatives of suitable order are zero for  
t = 0. Similar results are also shown for the discrete-time linear systems and for the fractional continuous-time and discrete-time linear systems. 
 
Streszczenie. W artykule rozpatrywane są ciągłe układy i obwody elektryczne liniowe oraz dyskretne układy liniowe z pochodnymi (i odpowiednio 
różnicami) wymuszeń. Pokazano, że wzory określające pochodne wyjścia układów i wektorów stanu są również prawdziwe dla ich pochodnych jeżeli 
odpowiednie warunki początkowe i ich pochodnych są zerowe. Analogiczne wyniki zostały również wyprowadzone dla układów dyskretnych rzędów 
całkowitych i niecałkowitych. (Odpowiedzi układów i obwodów elektrycznych liniowych rzędów całkowitych i nie całkowitych z pochodnymi 
wymuszeń). 
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Słowa kluczowe: układy liniowe, rząd niecałkowity, odpowiedz układu. 
 
 
Introduction 

Derivation of the response formulae for linear systems is 
a classical problem of linear systems theory and it has been 
addressed in many books and papers [1-4, 6, 11-13]. 
Mathematical fundamentals of fractional calculus and its 
some applications are given in the monographs [7-10]. 
Some problems of fractional systems theory and its 
applications have been considered in [3, 5, 9]. 

In this paper the following problem is addressed. Under 
which conditions the well-known formulae for the solutions 
of the state equations and their outputs are also valid for 
derivatives of their inputs for standard and fractional 
continuous-time and discrete-time linear systems. 

The paper is organized as follows. In section 2 the 
problem is analyzed for standard continuous-time linear 
systems and in section 3 for the standard discrete-time 
linear systems. An extension of these considerations to 
fractional continuous-time linear systems is given in section 
4 and to the fractional discrete-time linear systems in 
section 5. Concluding remarks are presented in section 6. 

The following notation will be used:   - the set of real 

numbers, mn  - the set of mn  real matrices and 
1 nn , Z  - the set of nonnegative integers, nI  - the 

nn  identity matrix.  
  

Continuous-time linear systems 
 Consider the continuous-time linear system shown in 

Fig. 1 with the impulse response matrix )]([)( 1 sGtg -L , 





0

)()]([)( dtetgtgsG stL , where )()( ssG mp  is 

the transfer matrix, 1-L  is the inverse Laplace transform and 

)(smp  is the set of mp  rational matrices in s. 

 

 
Fig. 1. Continuous-time linear system 
 

The output pty )(  of the system for the input 
mtu )(  and zero initial conditions 0)0( x  is given by 

(1)   
t

dutgty
0

)()()(  .                                                 

The following problem arises. Under which conditions the 
following equality also holds for the system 

(2)   
t

dutgty
0

)()()(   , 

where 
dt

tdy
ty

)(
)(   and 

dt

tdu
tu

)(
)(  . 

We will prove that (1) implies (2) if and only if 0)0( u  and  

0)0( y .  

By assumption the initial conditions are zero and 0)0( u  

implies 0)0( y . Multiplying the equality )()()( sUsGsY   

by s and taking into account that  0)0( u  and  0)0( y  

we have 
(3)  )]0()()[()0()( ussUsGyssY  .  

Applying the inverse Laplace transform to (3) we obtain (2) 
since 
(4) )0()()]([ yssYty L  and )0()()]([ ussUtu L . 

In general case we have the following theorem. 
Theorem 1. The equality (1) implies 

(5)   
t

qq dutgty
0

)()( )()()(  , ,...2,1q  

if and only if 

(6) 0
)(

)0(
0

)( 
t

k

k
k

dt
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u , 0
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)0(

0

)( 
t

k

k
k
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tyd
y , 

,...2,1k . 
Proof. Applying Laplace transform and the convolution 
theorem to (5) we obtain 

(7)
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For zero initial conditions we have                                      



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 6/2017                                                                                       133 

(8)  )()()()()( sUsGssUssGsYs qqq    

and (5) holds if and only if the conditions (6) are satisfied. □ 
Example 1. Consider the electrical circuit shown in Fig. 2 
with given resistance R, capacitance C, and source voltage 

)(tu . 

 
Fig. 2. Electrical circuit 
 
Using Kirchhoff’s law and Laplace transform to the electrical 
circuit we obtain 
(9)  )()()( sUssRCUsU CC   for 0)0( Cu , 

where )]([)( tusU L , )]([)( tusU CC L . 

From (9) we have 

(10) 
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Using the convolution theorem and inverse Laplace 
transform to (10) we obtain 

(11) 
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(12) 
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)(
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  for 0)0( u . 

Note that for 
(13) tUtu sin)(   

0)0( u , but for 

(14) tUtu cos)(   

0)0( Uu . 

Using (12) for (13) we obtain 

(15) 





t
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t
C de
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U
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tdu
Cti

0

)(

cos
)(
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. 

Consider the linear continuous-time system described by 
the state equations 
(16) BuAxx  , 
(17) DuCxy  , 

where ntxx  )( , mtuu  )( , ptyy  )(  are the 

state, input and output vectors, respectively and nnA  , 
mnB  , npC  , mpD  . 

The solution to the equation (16) for zero initial conditions 
0)0( 0  xx  has the form 

(18)  
t

tA dBuetx
0

)( )()(  . 

Substitution of (18) into (17) yields 

(19) )()()(
0

)( tDudBueCty
t

tA     . 

Theorem 2. The equalities (18) and (19) imply, respectively 

(20)  
t

qtAq dBuetx
0

)()()( )()(  , ,...2,1q  

and 

(21) )()()( )(

0

)()()( tDudBueCty q
t

qtAq     , ,...2,1q  

if and only if the condition (6) is satisfied. 
Proof. Proof is similar to the proof of Theorem 1. 
 
Discrete-time linear systems 
 Consider the discrete-time linear system shown in Fig. 3 

with given the impulse response matrix )]([)( 1 zGig  Z , 







0

)()]([)(
i

izigigzG Z , where )()( zzG mp  is the 

transfer matrix of the discrete-time system and )(zmp  is 

the set of mp  rational matrices in z. 

 

 
Fig. 3. Discrete-time linear system 
 

The output piy )(  of the system for the input miu )(  

and zero initial conditions 0)0( x  is given by 

(22) 



i

j

jujigiy
0

)()()( . 

The following problem arises. Under which conditions the 
following equality holds 

(23) 



i

j

jujigiy
0

)()()( , 

where )()1()( iyiyiy   and )()1()( jujuju  . 

We will prove that (22) implies (23) if and only if 
0)0( u and y(0)=0. 

By assumption the initial conditions are zero and 0)0( u . 

Multiplying the equality )()()( zUzGzY   by )1( z  and 

taking into account that y(0)= 0)0()( uzG  for 0)0( u  we 

obtain 
(24) )]0()()1)[(()0()()1( zuzUzzGzyzYz  . 

Applying the inverse Z-transform to (24) we obtain (23) 
since 
(25) )0()()1()]([ zyzYziy Z  and  

  )0()()1()]([ zuzUziu Z . 

In general case we have the following theorem. 
Theorem 3. The equality (22) implies 
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or 
(27) 0)( iu , 0)( iy  for 1,...,1,0  qi . 

Proof. Proof is similar to the proof of Theorem 1. 
Consider the linear discrete-time system described by the 
state equations 
(28) )()()1( iBuiAxix  , ,...}1,0{ Zi  

(29) )()()( iDuiCxiy  , 

where nix )( , miu )( , piy )( ,  Zi  are the 

state, input and output vectors, respectively and nnA  , 
mnB  , npC  , mpD  . 

The solution to the equation (28) for zero initial conditions 
0)0( x  has the form 

(30) 





1

0

1 )()(
i

j

ji jBuAix ,  Zi . 

Substitution of (30) into (29) yields 

(31) )()()(
1
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1 iDujBuACiy
i

j

ji  




 ,  Zi . 

Theorem 4. The equalities (30) and (31) imply, respectively 

(32) 
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 , ,...2,1q  

if and only if the condition (26) is satisfied. 
Proof. Proof is similar to the proof of Theorem 3. 
Example 2. Given the discrete-time linear system (28), (29) 
with the matrices 

(34) 
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0

1
B , ]10[C , 0D , 

input 

(35) )1(2)( ieiu   

and zero initial conditions. 
The transfer function of the system is equal to 
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Using (22) and (37) we obtain 

(38) 







i

j

jjiji
i

j

ejujigiy
00

)1(2])3(2)2(3[)()()( . 

Note that (35) satisfies the condition 0)0( u , but 

0)1(2)1( 1  eu . Therefore, the equalities (32) and (33) 

are satisfied only for 1q  but are not satisfied for 

,...3,2q . From (33) and (38) for 1q  we have 
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Fractional continuous-time linear systems 
 In this section the following Caputo definition of the 
fractional derivative will be used [3, 6-9] 

(40)  
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tfd
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 , 

  ,...}2,1{1  Nnn  , 

where   is the order of the derivative, 

(41) 
n

n
n

d

fd
f


 )(

)()(   

and 

(42) 



0

1)( dttex st  

is the Euler gamma function. 
Consider the fractional continuous-time linear system 

(43) BuAx
dt

xd



, 10    

(44) DuCxy  , 

where ntxx  )( , mtuu  )( , ptyy  )(  are the 

state, input and output vectors, respectively and nnA  , 
mnB  , npC  , mpD  . 

Applying the Laplace transform to (43), (44) and taking into 
account that 

(45) )0()( 1xssXs
dt

xd 










 



L , 

(46) 



0

)()]([)( dtetxtxsX stL , 10    

for zero initial conditions 0)0( x , we obtain 

(47) )(][)( 1 sBUAsIsX n
  , )]([)( tusU L . 

Taking into account that [3] 
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we obtain 

(49) 
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Using the inverse Laplace transform and the convolution 
theorem to (49) we obtain [3] 
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where 
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Substitution of (50) into (44) 

(52)  
t

tDudButCty
0

)()()()(  . 

Theorem 5. The equalities (50) and (52) imply, respectively 
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dBut
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(54) )()()(
)(

0

tDudButC
dt

tyd
t





    

if and only if 0)0( u , 0)0( y . 

Proof. Multiplying (49) by s  we obtain 

(55) 




 
0

1)1(1 )]0()([)0()(
k

kk ussUsBsAxssXs   

since by assumption 0)0( x  and 0)0( u . 

Applying the inverse Laplace transform to (55) we obtain 
(53) if and only if 0)0( u . Proof of (54) is similar. □ 

 
Fractional discrete-time linear systems 
 Consider the fractional discrete-time linear system 

(56) )()()1( iBuiAxix  , ,...}1,0{ Zi  

(57) )()()( iDuiCxiy  , 

where nix )( , miu )( , piy )( ,  Zi  are the 

state, input and output vectors, respectively, nnA  , 
mnB  , npC  , mpD   and the fractional 

difference of the order   is defined by 

(58) 
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Substituting (58) into (56) we obtain 
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where 
(61)  nIAA  . 

The solution of the equation (60) has the form [3] 
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Substitution of (62) into (57) yields 

(64) 
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Theorem 6. The equalities (62) and (64) for zero initial 
condition 0)0( x  imply, respectively 
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if and only if 0)0( u , 0)0( y . 

Proof. Using (62) for 0)0( x  we obtain 
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if and only if 0)0( u . The proof of (66) is similar. □ 

The considerations can be easily extended to higher order 
difference. 
Theorem 7. The equalities (62) and (64) for zero initial 
conditions 0)0( x  imply 

(68) 
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and 
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if and only if 0)0( u , 0)0( y . 

Proof. Using the z-transform to (58) for zero initial 
conditions and the convolution theorem we obtain 

(70) 
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where )]([)( ixzX Z . 

The z- transform to (56) and (57) for zero initial conditions 
yields 

(71) )(])1([)( 11 zBUAzIzX n
    

and 

(72) )(}])1([{)( 11 zUDBAzICzY n    , 

where )]([)( iuzU Z . 

Multiplying (71) and (72) by )1( 1 z  and using the 

inverse zet transform and the convolution theorem we 
obtain (68) and (69), respectively. □ 
 
Concluding remarks 
 The responses of continuous-time and discrete-time 
linear systems with derivatives of their inputs have been 
addressed. It has been shown that the formulae for state 
vectors and outputs are also valid for their derivatives if the 
inputs and outputs and their derivatives of suitable order are 
zero for 0t  (Theorem 1). Similar results are also valid for 
discrete-time linear systems (Theorem 3) and fractional 
linear systems (Theorem 5 and Theorem 6). The 
considerations have been illustrated by examples of 
continuous-time and discrete-time linear systems. The 
considerations can be extended to fractional positive linear 
systems. 
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