
154                                                                             PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 12/2018 

Andriy CHABAN1, Marek LIS2, Andrzej SZAFRANIEC1, Marcin CHRZAN1, Vitaliy LEVONIUK3 

University of Technology and Humanities in Radom, Faculty of Transport and Electrical Engineering (1), Czestochowa University of 
Technology, Faculty of Electrical Engineering (2), Lviv National Agrarian University (3) 

 
doi:10.15199/48.2018.12.33 

 

Analysis of transient processes in a power supply system of 
concentrated and distributed parameters based on variational 

approaches 
 
 

Abstract. Starting with variational approaches using a modified Hamilton-Ostrogradsky principle, a mathematical model of a power system is 
developed and analysed as a concentrated parameters system for power autotransformer feeder reactors and capacitors and as a distributed 
parameters system for supply lines. The final discretised state equations of the power system are represented in Cauchy format. Results of 
computer simulations are presented as drawings. 
 
Streszczenie. Korzystając z podejść wariacyjnych przy użyciu zmodyfikowanej zasady Hamiltona-Ostrogradzkiego, opracowano matematyczny 
model systemu elektroenergetycznego, który analizuje się jako układ o parametrach rozproszonych. Końcowe, dyskretyzowane równania stanu 
systemu elektroenergetycznego są przedstawione w formacie Cauchy'ego. Wyniki symulacji komputerowych przedstawiono na rysunkach. (Analiza 
procesów nieustalonych w układzie elektroenergetycznym o parametrach skupionych i rozłożonych na podstawie podejść wariacyjnych). 
 
Keywords: Hamilton-Ostrogradsky principle, interdisciplinary modelling, power system, power supply line, distributed parameters system, 
telegraph equation, concentrated and distributed parameters system. 
Słowa kluczowe: zasada Hamiltona-Ostrogradskiego, modelowanie interdyscyplinarne, system elektroenergetyczny, linia zasilania, 
równanie telegrafistów, układ o parametrach skupionych i rozłożonych. 
 
 
Introduction 

Application of mathematical apparatus to modelling of 
electrical power systems is virtually the most effective 
method. This approach finds extensive applicability in the 
case of power systems including long supply lines. 

Such a system generally consists of widely different 
parts: power plants, switching stations, supply lines, 
compensation systems, and a number of other elements [1]. 
Long power supply lines are key parts in electricity 
processing and transmission. High voltage lines between 
local power systems constitute inter-system connections. 
Fault currents, dependent inter alia on capacitances 
between wires, and leakage currents, which depend on 
electric charges on wire surfaces (corona discharge), must 
be considered in these lines. Current in line wires generates 
an alternating magnetic field that induces along a self-
induction SEM line. In addition, voltage between the line 
wires is not constant either. To address current and voltage 
variations along the line, it must be assumed each infinitely 
short wire section exhibits resistance and inductance, with 
capacitance and conductance between wires of that 
section. In other words, the line should be treated as a 
distributed parameters system [2]. 

In view of these conditions, use of ordinary and partial 
differential equations, including the telegraph equation, is 
recommended for analysis of transient processes in power 
systems. Their solution is not a problem. Both analytical 
and numerical methods are employed (D’Alembert’s, 
Fourier’s, reticulated, and other methods.) Finding boundary 
conditions for the telegraph equation as parts of the only 
system of general differential equations of a power system 
is the most complicated problem in analysis of transient 
processes in power systems, on the other hand. The theory 
of applied mathematics says Dirichlet first type, Neuman 
second type, and Poincaré third type boundary conditions 
serve to solve boundary problems [3].  Boundary conditions 
of the first type are commonly used to solve the telegraph 
equation in specialist publications [4]. This approach is 
reasonable if functional dependences (charge, current or 
voltage, depending on the type of telegraph equation [3]) at 
a line’s start and terminal are known. In actual problems of 
applied electrical engineering, meanwhile, these functional 

dependences at line terminals are unknown, for instance, in 
analysis of complicated elements of power subsystems 
connected with long lines. Since boundary conditions are 
normally not known openly in our studies [3], the first-type 
condition cannot be utilised. 

Another approach, including the boundary conditions of 
the second and third types, is necessary to solve real, 
complex power systems. This will employ not functional 
dependences but spatial functional derivatives, as well as 
equations of these functions. Use of Neuman and Poincaré 
conditions allows for exclusion of e.g. voltage from a system 
of discretised differential equations in fictitious discretisation 
nodes, reducing them to a single system of differential 
equations where the number of unknowns is the same as 
the number of equations. 

From the viewpoint of mathematical modelling, two 
approaches are commonly applied to analysis of transient 
processes in dynamic systems: classic and variational – in 
our case interdisciplinary. As part of the former, a sole 
dynamic system is analysed as a combination of non-
stationary systems. For example, power engineering and 
mechanical equations are combined by means of  
equations relating equilibrium of moments [1, 3, 5, 6, 7]). 
The defect of this method is obvious: relational equations 
cannot be fully solved in distributed parameters systems, 
which in turn restricts adequacy of the integrated system 
model. This defect does not apply to the variational 
approaches in [3], where a new interdisciplinary method is 
developed modifying Hamilton-Ostrogradsky principle by 
expanding the Lagrange function with two components: 
energy of dissipation and energy of external non-potential 
forces. This modification of the principle of least action 
allows for applying the variational approach that is fully 
comparable to classic approaches [3]. 

The objective of this study is to develop a method of 
analysing transient processes in complicated power 
systems of concentrated and distributed parameters based 
on variational approaches. 

Mathematical model of the system 
A power system shown in Fig. 1 is used in connection 

with transient processes in this article. A three-phase supply 
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line with the default voltage of 750 kV in its single-phase 
and single-line version is the central element of the system.  

 
Fig. 1. Circuit diagram of a local power system 

N sources of infinite power are connected to the left side 
of the line by means of non-linear power autotransformers 
with a transformation coefficient of 750/330. TR 

autotransformers in Figure 1 operate as an electricity 
receiver shown as M equivalent networks of the default 
voltage 400 kV. This system is addressed as a 
concentrated parameter arrangement. Symmetrisation of 
the system’s operating conditions, including those of a 
400 kV supply system, is a key issue. Air-spaced coils are 
added to the system, therefore, in order to symmetrise its 
operation. 

Hamilton-Ostrogradsky action functional [3] for the 
system in Fig. 1 is as follows: 
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where S – Hamilton-Ostogradsky actions, I – energetic 
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where: L – left-hand side index of power supply to the line, 
R – right-hand side index of power supply to the line,  – 
associated streams, i – currents, i(x, t) – current across the 
line, R0, g0, C0, L0 – line parameters, R3 – dissipation of 
external energy, RB – dissipation of internal energy, Q(x, t) 
– load on the line, N, М – number of autotransformers; e(t) – 
electromotive forces; LV,М – total inductances of the line and 
of the electric power system; LR,M – inductances of air-
spaced coils; RV,М – total resistances of the line and of the 
electric power system; RR,M – resistances of air-spaced coils; 
СL1, CL2 – capacitances of the line; QСL1, QСL2 – electric loads 
for capacitors СL1, CL2; rR1,j, rR2,j, rL1,j, rL2,j – resistances of the 
primary and secondary power autotransformer windings. 

Solving (1) – (7) – see examples in [8, 9] - produces 
Euler-Lagrange equations: 
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Ψ-model of the autotransformers will be converted into 
an appropriate A-type model [3]: 
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where Akm,j – coefficients dependent on reverse inductances 
of power autotransformers [3]. 
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where i1, i2 – currents across primary and secondary 
autotransformer windings. 

 Relations among the line elements will be formulated 
taking the second Kirchhoff’s law for distributed parameter 
electric circuits as the starting point [2, 3] 

(20)           0 0

( , ) ( , )
( , )

u x t i x t
R i x t L

x t

 
  

 
. 

Equations (13) and (20) are then discretised using the 
straight line method (central derivative) [1] 
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By solving (10) – (12), (14) – (17) together with (21), 
(22), the following will then result: 
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Node voltages Vr,j will now be determined, see Fig.1.  
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The line currents will be obtained by discretisation 
(20) using the straight line method, though now by means 
of the right-side derivative [3]: 
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The system of equations: (11), (12), (14) – (17), (21), 
(26), (27) will be jointly integrated owing to (18), (19), (23) – 
(25). 

Results of computer simulations 
A computer simulation of transient processes was 

applied to the instance of the power system illustrated in 
Figure 1 assuming N = M = 2. Where the system operates in 
a steady state, symmetrical three-phase short-circuiting 
takes place on the side of voltage 400 kV (К in Fig. 1, 
t = 0.2 s). The system’s parameters: еL1 = 622sin(ωt + 0º) kV, 
еL2 = 619sin(ωt + 2.3º) kV, еR1 = 581sin(ωt + 11.9º) kV, 
еR2 = 593sin(ωt + 14.9º) kV, rTL1 = rTL2 = 0.98 Ω, LTL1 = LTL2 = 
0.188 H, rTR1 = rTR2 = 0.95 Оm, LTR1 = LTR2 = = 0.184 H, 
RV,1 = 4.805 Ω, LV,1 = 0.189 H, СL,1 = 1.1399·10-6 F, RV,2 = 4.267 
Ω, LV,2 = 0.163 H, СL,2 = 0.7979·10-6 F, RR,1 = RR,2 = 5.58 Ω, 
LR,1 = LR,2 = 472 H. The line is 476 km long, while: R0 = 1.9·10-

5 Ω /m, L0 = 9.24·10-7 H/m, С0 = 1.3166·10-11 F/m, g0 = 3.25·10-

11 Sm/m.  

 
 

Fig. 2. Distribution of space voltage (1) and current (2) distribution 
across the supply line for the time t = 0.0005 s 

Distribution of space voltage (1) and current (2) across 
the supply line is presented in Figure 2. Note the highly 
complex process of an electromagnetic wave expanding 
along the line. The voltage in the initial line section is 45kV, 
at the terminal -20kV, whereas it is zero in the middle part 
of the line. 

Figures 3 and 4 show temporary current and voltage in 
the middle section of the supply line when loaded. 

At the instant t = 0 s, all the existing SEMs were 
connected to the system and the amplitude of the voltage 
function in the steady process reached 620 kV, with current 
– 0.7 kА. 

 
Fig. 3. Temporary voltage in 

the middle of the line  

 
Fig. 4. Temporary current in 

the middle of the line  
 

 
Fig. 5. Current іR2,2 of the 
autotransformer ТR,2 750/400 kV. 

 
Fig. 6. Current іR2,1 of the 
autotransformer ТR,1 750/400 
kV. 

Analysis of Figures 5 and 6 shows the temporary 
currents across the power autotransformer windings on the 
side of 400 kV contain aperiodic components. This is 
related to presence of shunt short-circuit reactors on the 
400 kV side. On short-circuiting (t = 0.2 s), the short-
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circuiting current іR2,2 of ТR,2 reaches 3 kА аnd іR2,1 of ТR,1 
reaches  the value of 9.4 kА. 

 
Fig. 7. Temporal-spatial distribution of the voltage function within 

the time range t  [0.19; 0.24]s. 
 

 
Fig. 8. Temporal-spatial distribution of the current function within 

the time range t  [0.19; 0.24]s. 

Figures 7 and 8 contain spatial waveforms of voltage 
and current. They are very important from a user’s point of 
view, since they indicate temporal-spatial distribution of the 
waveforms after short-circuiting. A physical effect – motion 
of an electromagnetic wave along a supply line – can also 
be seen in Figures 7 and 8. 

Conclusion 
1. Application of modified Hamilton-Ostrogradsky principle 

to mathematical modelling of dynamic systems, 
including power systems, allows for describing an 
integrated power system with equations relying on a 
single energetic approach only. 

2. Finding initial and, in particular, boundary conditions is 
an important part of solving boundary or mixed 
problems. Boundary conditions of the second and third 
types need to be employed to search for the latter in 
power systems.  

3. Results of computer simulations enable analysis of 
dynamic states, of use at the stages of design and 
operation of power facilities. 

4. Graphs of complicated functional dependences in 
supply lines should be presented in 3D space. Such 
graphics allow for analysis of electromagnetic wave 
motion in space and time. 
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