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Abstract. Boundary integral model corresponding to the Laplace, Poisson and Helmholtz equations for circular and annular regions was considered 
in the paper. By expanding the excitation and the solution into the Fourier series, the problem is reduced to purely algebraic for each angular 
harmonic. An example of use of the reduced boundary integral equation is given. As a kind of by-product, some definite integrals were found. 
(Zredukowane równanie całkowo-brzegowe dla równania Laplace’a/Poissona oraz Helmholtza w obszarze pierścieniowym).  
 
Streszczenie. Przedstawiono model całkowo-brzegowy dla równania Laplace’a, Poissona i Helmholtza w obszarach kołowych i pierścieniowych. 
Wykorzystując rozwinięcie wymuszenia i rozwiązania w szereg Fouriera, zagadnienie zredukowano do czysto algebraicznego dla każdej z 
harmonicznych kątowych. Zaprezentowano przykład zastosowania. Jako produkt uboczny obliczono pewne całki oznaczone. 
  
Keywords: boundary integral formulation, reduced BIE, mesh reduction, cylindrical symmetry. 
Słowa kluczowe: model całkowo-brzegowy, zredukowane równanie całkowo-brzegowe, redukcja siatki, symetria cylindryczna. 
 
 

Introduction 
Mesh reduction is an important trend in computational 

methods. One of the methods belonging to that line is the 
boundary element method (BEM), e.g. [1-3]. It originates 
from the boundary integral equation (BIE), which describes 
the problem via the fundamental solution and the boundary 
values of field. The main reason of using it seems the fact 
of lowering the dimension of a problem. This results in 
smaller number of equations. For example, BIE formulation 
moves the calculations from a 3D region to its 2D boundary.  

In case of certain symmetry a further reduction of the 
dimension is possible. Consider, for example, a 3D region 
of axial symmetry. Technically, BIE itself makes the 
problem 2D, but the axial symmetry makes it possible to 
consider the boundary in an axial cross-section, which is a 
line (1D). The derivation for several types of equations can 
be found for example in [2, 4]. A similar idea can be applied 
for circular or annular regions. In such a case the reduced 
boundary becomes a point or a set of isolated points. In 
fact, the reduced BIE (RBIE) becomes an algebraic 
equation then, and requires no numerical implementation in 
the form of BEM. This procedure for selected types of 
equations will be shown in this paper. From a general point 
of view, such an approach belongs to the trend of using the 
full information on the boundary shape, represented among 
others by so called parametric integral equation system [5]. 
It is worth mentioning that there are other trials for 
incorporating the cylindrical symmetry into BEM, e.g. using 
circular elements [6].  

 
RBIE in polar coordinates 

Consider annular domain Ω, whose internal and external 
radius is a and b, respectively (Fig. 1). Suppose function u 
satisfies the following equation: 

(1) ,κ22 fuu   

where f – known function, κ – know constant. The 
corresponding boundary integral equation written for point X 
in domain Ω or on its boundary S is as follows [1, 2]: 
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Fig.1. Annular domain 
 
where c(X) is the geometric coefficient, and G(X, Y) is the 
fundamental solution for Eq. (1). In this case, boundaries S1 
and S2 are circles, hence Eq. (2) can be rewritten in polar 
coordinates. Function u(X) can be expanded into complex 
Fourier series with respect to angular coordinate as follows: 
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where j is the imaginary unit, and 
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Similar formulas are for f(X). Using the expansions in Eq. 
(2) and performing the integration with respect to angular 
coordinate, one obtains: 
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Eq. (5) is an algebraic equation. It does not require the 
discretization of the boundary into elements. The 
boundaries are now points corresponding to the radii of the 
boundaries. If a = 0, the ring degenerates to a punctured 
disk, and the terms involving a are absent in Eq. (5). 
Similarly, if b = ∞, the terms with b can be removed from Eq. 
(5).  

 
Using RBIE 

The hardest part in the above procedure is determining 
gk and hk. This will be described in the next sections. Here, it 
is just assumed that gk and hk are known. Eq. (5) can be 
now used to solve a boundary integral problem in annular 
region. For simplicity, it is assumed here that this is a 
Dirichlet problem, i.e. u(a, φ) and u(b, φ) are known. By 
Fourier series, also uk(a) and uk(b) are known. As in BEM, 
the first step is to determine the lacking boundary values, in 
this case qk(a) and qk(b). To achieve this, Eq. (5) is used 
twice: first with r = a, and then with r = b. Hence, the 
following system of equations is obtained 
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where c(a) = c(b) = ½. The system of equations is then 
solved with respect to qk(a) and qk(b). Having found these 
values, one can put any r (a < r < b) into Eq. (5) to obtain 
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Then Eq. (3) can be used to find u(r, φ). 
 

The Laplace/Poisson equation case 
If κ = 0, Eq. (1) becomes the Laplace or Poisson 

equation, and the 2D fundamental solution is as follows: 
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where (r, φ) and (ρ, θ) are polar coordinates of points X and 
Y, respectively. Hence, after some transformations 
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It is difficult to evaluate the integral directly. Case of k = 0 
can be found in [11] as formula (4.224-14), which gives 
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Then, by Eq. (8) 

(15) 

















.ρ0

,ρ

,ρ1

ρρ

)ρsgn(1
ρ)ρ,( 2

1
0

r

r

r

rr

r
rh

for

for

for

 

If k ≠ 0, then gk and hk are hard to evaluate directly (e.g. 
Mathematica 7.0 fails). Tables of integrals [7] (formulas 

4.397-6) can be helpful, but the integrals appear in [8]. The 
result is 
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If necessary, Fk(r) given by Eq. (9) can be evaluated by 
splitting the integration interval as follows: 
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Then the integrals can be found using appropriate forms for 
gk(r, ρ) in intervals a ≤ ρ ≤ r and r ≤ ρ ≤ b. 

 
The Helmholtz equation case 

If κ ≠ 0, Eq. (1) is the Helmholtz equation, for which the 
2D fundamental solution is as follows: 
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where K0(z) is modified Bessel function of the second kind 
of order 0. Simple transformations give 
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This integral can be found in [7] as formula 6.681.13, but 
only for k = 0 and r = ρ. Integral hk can be only found by 
Mathematica 7.0 for k = 0 and r = ρ, but it involves the 
special Meijer G function. The general case requires special 
methods. It can be shown (see Appendix) that 
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where Ik(z) and Kk(z) are modified Bessel functions of the 
first and second kind, respectively, of order k, and the prime 
denotes their derivatives. Due to the fundamental property 
of the modified Bessel functions, it follows that 
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and the case for r = ρ in Eq. (22) can be simplified in the 
following way: 
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Functions gk(r, ρ) and hk(r, ρ) for selected values of 
parameters are depicted in Fig. 2. 
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Fig.2. Functions gk(r, ρ) and hk(r, ρ) for selected k and κ (solid lines 
– real part, dashed lines – imaginary part) 

 
Example 

Consider a long, homogeneous cylinder of radius R and 
electrical conductivity pγ0 placed in an open conductive 
medium of conductivity γ0 in which an externally applied 
potential, Vs(r, φ), exists. This potential can be expanded 
into Fourier series so that its k-th term equals 
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Eq. (5) can be used for the cylinder itself (with a = 0 and b = 
R) as well as for the external region (with a = R and b = ∞). 
Taking into account the remarks below Eq. (9), the following 
system of equations is obtained: 
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where functions gk and hk are given by Eqs. (16) and (17), 
and “int” and “ext” refer to the internal and external domain, 
respectively. The continuity of current across the boundary 
leads to relationship pqk

int(R) = qk
ext(R). Thus, 
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In the next step, again Eq. (5) is used for the internal 
region (a = 0, b = R, r < R): 
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Similarly, Eq. (5) is used for the external region (a = R, b = 
∞, r > R) to obtain: 
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The final expressions for potential inside and outside the 
cylinder are given by Eq. (3): 
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The expressions are equivalent to those obtained via the 
method of separation of variables. 

 
Extra results 

By combining Eqs. (20) and (21) the following formula is 
obtained: 
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for integer k. Differentiating the formula with respect to r or 
ρ, one can obtain more integral formulas. 
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Conclusions 
The RBIE reduces the dimension of the problem to 1D 

and makes the boundary integral equation an algebraic 
one. In such a case, no numerical implementation in the 
form of BEM is necessary. Its use in solving a boundary 
problem is equivalent to the method of separation of 
variables in polar coordinates. 

 
Appendix – derivation of Eqs. (21) and (22) 

To obtain gk and hk for the Helmholtz equation, let us 
consider the equation in polar coordinates 
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The method of separation of variables leads to the following 
general solution: 
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To obtain a finite solution in circular region 0 ≤ r ≤ ρ it is 
necessary to put dk = 0. Therefore the amplitude of k-th 
angular harmonic equals ckIk(κr). On the other hand, the 
corresponding RBIE is as follows: 
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When r < ρ, c(r) = 1. Putting uk(r) = ckIk(κr) and c(r) = 1 into 
this RBIE yields 
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By using Eq. (8) this equation can be rewritten as follows: 
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This is a differential equation with respect to gk(r, ρ) with 
constant r and variable ρ. It has the following solution: 
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where A is the integration constant, which can be found 
using the boundary condition visible from Eq. (20), 
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where δk,0 is the Kronecker delta. Hence A = 0. 
The above procedure can be repeated for annular 

region ρ < r < ∞, but this time ck = 0 is required to keep the 
solution meaningful at infinity. Hence, Kk(κr) should be used 
instead of Ik(κr). The relevant RBIE is now as follows: 
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(see remarks below Eq. (9)). This leads to the following 
result: 
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where B is the integration constant. 

Hence, there are two forms of gk, given by Eqs. (f) with A 
= 0 and (i) with certain B. To determine B it can be observed 
that gk is a continuous function of r and ρ, as Eq. (20) 
shows. Therefore, forms (f) and (i) should be equal for r = ρ: 
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This is only possible when B = 0. Hence, 
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what can be rewritten as Eq. (21).  
To determine hk, Eq. (8) can be used.  
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Observe that: 

(m) .
2

ρρ
)ρ,max(,

2

ρρ
)ρ,min(







rr
r

rr
r  

Hence, 

(n) 

 

  )],ρ,[max()ρ,min(
2

)ρsgn(1
κ

)]ρ,[max()ρ,min(
2

)ρsgn(1
κ

ρ

)ρ,(

rKrI
r

rKrI
rrh

kk

kk
k







 

what can be rewritten as Eq. (22). 
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