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Abstract. In the paper the classic Angstrom method of determining the value of conduction heat transfer has been successfully tested. The 
usefulness of the Angstrom method was investigated in terms of temperature measurement of metal samples deviating from the general 
assumptions of the method. A Hamming’s neural network was proposed to simulate the similarity of the sample metal to previously known metals.  
 
Streszczenie. W pracy sprawdzono działanie klasycznej metody Angstroma do wyznaczania wartości przewodności cieplnej właściwej . 
Sprawdzono przydatność tejże metody w warunkach cieplnych odbiegających od założeń metody. Wykorzystano sztuczną sieć neuronową 
Hamminga do określania stopnia podobieństwa materiału próbki testowej do znanych, typowych stali stosowanych w praktyce przemysłowej. 
(Metody wyznaczania przewodności cieplnej w warunkach półprzemysłowych) 
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Introduction 

The knowledge of thermal diffusion or thermal 
conductivity is important in strength analysis of mechanical 
constructions operating under varying thermal conditions. 
For this reason, there is a need to determine these 
parameters with good accuracy in “in-situ” conditions which 
are different from research laboratory.  

Properties of metals and their alloys, in particular their 
thermal conductivity, is very important in experimental 
studies due to their necessity in the numerical modelling of 
complex physical systems used in industry. Previous 
practice is rely on the data in tables of the material 
properties of certain metals, which are determined by 
making enough all measuring regimes appropriate to 
laboratory conditions. Based on such properties is natural 
common, however, researchers who model different 
thermal phenomena should be aware that, for example, the 
chemical composition of metal alloys that they model does 
not always correspond to those given in the tables, which 
may change their thermal properties. 

In the paper the method of determining the diffusivity 
and thermal conductivity of metal samples by the method 
using the heat wave phenomenon has been discussed and 
proven.  
 
The Angstrӧm Method - key assumptions 

In the Angstrom method, one-dimensional heat flow is 
measured in a long, homogeneous thin rod, one end of 
which is placed in a heat generator of sinusoidal power P  
according to formula 1. 

(1)        tPtP
x

cos00
 

where: P0 – amplitude of input power,  – angular 
frequency, t – time,  – initial phase of signal. 
 

The other end of the rod is kept at constant temperature. 
The idea of measurement is shown in Fig. 1 
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Fig. 1. The idea of determining the thermal conductivity in a metal, 
thermally insulated rod. 

Therefore, it can be assumed that the temperature at 
the beginning of the rod will change according to formula 2. 

(2)       tt
x

cos00
 

where 0 – amplitude of temperature 
 

At any point of the rod “x” the temperature dependence 
of time will take the form of a wave equation 3 [1,2]. 

(3)    xbtext xa    cos, 0  

where: the coefficients a and b are related to the thermal 
diffusivity of the formula: 

(4)   


2

ba  

where:  – angular frequency,  = /c – thermal diffusivity. 
 

After mathematical transformations, the formula for thermal 
diffusivity can be given as: 
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where: l – distance between points x1 and x2 (Fig. 1),  
t – phase shift between heat waves, 1, 2 – amplitudes of 
heat waves. 
 

Hence, the thermal conductivity can be calculated from the 
formula: 
(6)     KmWcw    
 

where:  – metal density, cw – specific heat. 
 

The method of measurement is shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. The method of determining the values x1, x2 and t. 
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Determination thermal conductivity with Angström 
method 

Described above method of determining the diffusivity 
and thermal conductivity of the metals was tested on a one-
dimensional numerical model developed by the author, in 
which all the thermal conditions due the Angström method 
are met. The most important of these are: periodic force 
with sufficiently high power (or temperature) at the left end 
of the bar, no heat dissipation from its surface and 
maintenance of the opposite end of the rod at a constant 
temperature of 20ºC. The selection of measuring points x1 
and x2 (Fig.1) and the time of the experiment due to the 
period of heat wave induction are the major factors 
influencing to the results. Using the trial and error method it 
has been supposed that for the length of the bar L = 0.6 m, 
the measurement points x1 and x2 are respectively 0.2 and 
0.4 m (so l = 0.04 m). 

It was presumed that the period of forcing the sinusoidal 
wave was To = 8000 s at the time of the experiment of 10 
hours. The accuracy of the method was examined for 
metals with extremely different values of thermal 
conductivity - from 15 to 372 W / (mK). In the calculations, 
the last 3 heat wave periods were analysed. Results are 
shown in table 1.  

 
Table 1. Results of examined the thermal conductivity values of 
metals. 

Tabular values Calculated values 

Type of 
material 

  
[W/(mˑK)] 

c  
[J/(m3·K)] 

  
[W/(m·K)] 

Calculation 
error [%] 

Nickel Steel 
(25 Ni) (A) 15 3,80E+06 14,983 0,113
Carbon steel 
(B) 52 3,90E+06 52,028 0,054
Iron Armco 
(C) 70 3,65E+06 69,984 0,022

Brass (D) 118 3,29E+06 117,980 0,016
Aluminium 
(E) 230 2,42E+06 230,058 0,025

Copper (F) 372 3,22E+06 371,888 0,030
 

As can be seen, maintaining the above described 
assumptions, the Angström method gives accurate results 
of determine the thermal conductivity value of selected 
metals. 

 
Establish measuring conditions for determining 
thermal conductivity in industrial environments. 

In order to examine the possibility of using the Angstrӧm 
method under industrial conditions it is assumed that the 
measurements will be carried out on cuboid-shaped 
samples with dimensions: 0,6 x 0,6 x 0,12 m, shown in Fig. 
3. The aim of the first experiment was to check two variants 
of temperature measurement – on the upper surface and 
the bottom test sample. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. Simulated system of determination  and  under industrial 
conditions. Power P is given on zone 0.09 m 

In the simulations it was assumed that the convection 
coefficient from the upper surface was 30 W/(m2K) and 15 
W/(m2K) with sidewall surfaces. Results are shown in table 
2. Similar experiments have been realized in the papers 
[3,4]. 
 
Table 2. Dependence of the value of the determination of the  
value from the temperature measurement point in the sample 

Type of 
material 

Tabular 
values   
 

Temperature 
measurements 
on the upper 

surface. 

Temperature 
measurements on 
the bottom surface 

 
[W/(m·K)]

  
[W/(m·K)] 

Calc. 
error.  
[%] 

 
[W/(m·K)]

Calc. 
error. 
[%] 

Nickel Steel 
(25 Ni) (A) 

15 8,378 44,14 13,789 8,074 

Carbon steel 
(B) 

52 31,527 39,37 53,754 3,376 

Iron Armco 
(C) 

70 42,017 39,97 70,948 1,354 

Brass (D) 118 63,441 46,23 107,134 9,208 

Aluminium 
(E) 

230 126,048 45,19 217,428 5,466 

Copper (F) 372 226,267 39,17 394,962 6,172 
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Fig. 4. Errors in determining the value of  as a function of the 
thickness of test samples and the heat wave period. 
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Results shown in table 2 indicate that omitting 
phenomenon of spatial heat wave propagation (Fig 3) leads 
to significant errors (about 50%) of determination the -
value. Taking this fact into account, changing the position of 
the sensors on the heat-insulated bottom surface of the 
sample gives a reduction of the error of determination of  
to a value of a few percent. In industrial practice, this may 
be an acceptable error.  
 
Examination of the influence of the thickness of the test 
sample and the frequency of the generated heat wave 
on the accuracy of the determination of the value of l 

In the next simulations the influence of the thickness of 
the test sample and the period of heat wave generation 
have been examined. The three values of thickness (24, 61 
and 122 mm) and three periods of heat waves (2000, 4000 
and 8000 s) have been checked. Results are shown in the 
Fig. 4. 

The results indicate that the smallest errors of the  
value are found for the thinnest test plate for a heat wave 
period of T = 4000s. However, in the case of having a larger 
sample, it is possible to select the frequency of the thermal 
induction wave at which, for different  values, the error of 
its determination will be as small as possible. It is good to 
initially estimate what value  can be expected. To do this, it 
was proposed to use Hamming's neural network to 
determine the similarities of the unknown sample material to 
one (or more) known types of steel. 
 

Use artificial neural network to classify temperature 
response of test sample into a set of target categories. 

The proposed method depends on classify the 
temperature step input response of the sample to one or 
more learned categories. To solve this problem called 
pattern recognition, the Hamming network shown in Fig. 4 is 
used [5]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5. An example of the wide figure inserted into the text 
 

Hamming’s Neural Network consists of two layers: input 
layer – a layer built with neurons, all of those neurons are 
connected to all of the network inputs and output layer – 
which is called MaxNet layer. The output of each neuron of 
this layer is connected to input of each neuron of this layer, 
besides every neuron of this layer is connected to exactly 
one neuron of the input layer (see Fig. 5). 

The operation of the Hamming network consists in the 
input of the master network signals that the network is 
about to learn. Each pattern is assigned to the  
classification code in a matrix m on m dimension, where m 
is the number of patterns to learn by a network. After 
learning, the network allows you to assign a previously 
unknown signal to one of the learned patterns. 

Preparation for learning network signals. 
Patterns prepared to learn the Hamming network should 

be easily distinguishable. For this reason, it was assumed 
that the standard patterns should be the difference of the 
temperature step response of the sample measured at 
points x1 and x2 due to input force P. These signals are 
calculated by the formula:  

(7)   
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where: i – ith sample of temperature, A, B, …,F – kind of 
material (see tables). 

 

The registration time was 0.5 hours. Figure 6 shows 
how, based on formula 7, to prepare the teaching pattern 
for steel Nickel Steel (25 Ni) (A). 

The teaching patterns for each standard material are 
prepared in the same way. There are shown in Fig. 7. 

It has been assumed that a hidden-layer neural network 
is consist of 20 neurons with sigmoid activation functions, 
while the output layer has 6 coupled by loopback neurons.. 
Scaled Conjugate Gradient was assumed as a method to 
minimize the error function. The network learning process is 
fast converging and lasts for about 180 epochs. 

From now on, the learned network can be used to 
quickly determine to which element of standard set the 
temperature response of the sample will be most similar. 
This allows a quick estimate the value of the product of c 
and thermal conductivity . This in turn will allow to select 
the appropriate period of the sine heat wave and its power, 
so that the -value errors are as low as possible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6. An example of preparing the teaching pattern. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7. All patterns used to teaching Hamming’s network. 
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The performance verification of the material class 
recognition system  

In order to verify the operation of Hamming's network, 
initial identification of samples made from metals originating 
outside the standard set was examined. The difference in 
their temperature responses at points x1 and x2 on the 
heating power step, was applied to the input of the learned 
network. Examined network returns 6 on 1 vector 
classifying the sample. The tested sample is more similar to 
the standard sample, if the value at its position is closer to 
value 1. Results of samples verification are presented in the 
table 4. 

 
Table 3. Results of pre-identification of material type.  in (W/(m·K), 
ˑc in J/(K·m3) 

Simulated 
properties of 
unknown 
sample 

Standard samples 

A  B  C  D  E  F 

=400 
c=3.3e6 

0  0.0031  0.0001  0.0136  0.0001  0.983 

=120 
c=3.2e6 

0  0  0.0754  0.89  0.0348  0 

=35 
c=3.8e6 

0.0004  0.981  0.0184  0  0  0 

 
Table 4 shows that sample of simulated 

 = 400 W/(mK) and c = 3.3x106 J/(m3K) is most similar 
to standard sample F, that means Copper (see table 1). 

Having a preliminary knowledge of the type of sample 
(thermal conductivity  and the product of density and 
specific heat c and knowing its dimensions it can be 
determined: the power required to achieve a measurable 
temperature amplitude of the forcing period (based on 
previously acquired knowledge) giving the smallest error of 
determination of -value and based on it time of 
experiment. 
 

Conclusions 
In the paper the classic Angstrom method of 

determining the value of conduction heat transfer has been 
successfully tested. The usefulness of the Angstrom 
method was investigated in terms of temperature 
measurement of metal samples deviating from the general 
assumptions of the method. It was found, that accuracy of  
determination depends on cuboid sample thickness and 
period of generating heat wave. A Hamming’s neural 
network was proposed to simulate the similarity of the 
sample metal to previously known metals.  
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