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On the similarity and challenges of multiresonant and iterative
learning current controllers for grid converters and

why the disturbance feedforward matters

Abstract. There are two main techniques to solve the reference tracking problem for repetitive references and under repetitive disturbances, namely
multiresonant (a.k.a. multioscillatory) controllers and iterative learning controllers. Nevertheless, neither of the approaches is a definitive winner, which
is to be demonstrated herein. Both have their strengths, weaknesses and challenges. A grid-tie converter will be the case study here. The goal is to
draw or inject sinusoidal currents under distorted grid voltage conditions. The supporting feedforward controller will be addressed within the context of
the discussed repetitive control task. The case will be illustrated using numerical simulations. Our main goal is to make practitioners familiar with the
relationships between these two control methods.

Streszczenie. Istnieją dwia główne sposoby rozwiązywania zadania regulacji nadążnej dla powtarzalnego sygnału zadanego w obecności powtarzal-
nego zakłócenia, jest to zastosowanie regulatorów wielorezonansowych (zwanych też wielooscylacyjnymi) oraz regulatorów z uczeniem iteracyjnym.
Jednak żadnego z tych rozwiązań nie można uznać za jednoznacznie lepsze, co zostanie tutaj pokazane. Oba cechują zarówno mocne strony, jak i
pewne słabości oraz wyzwania implementacyjne. Przekształtnik sieciowy posłuży tutaj za przykład. Celem jest pobieranie lub oddawanie sinusoidal-
nego prądu sieci pomimo odkształconego napięcia. Omówione zostanie również sprzężenie w przód od zakłócenia w kontekście zadania sterowania
powtarzalnego. Zagadnienie zostanie zilustrowane przy użyciu symulacji komputerowych. Naszym głównym celem jest pokazanie praktykom związków
pomiędzy tymi dwiema metodami sterowania. (O podobieństwach i wyzwaniach regulatorów wielorezonansowych i regulatorów z uczeniem
iteracyjnym dla przekształtników sieciowych oraz dlaczego sprzężenie w przód ma znaczenie)

Keywords: repetitive control, iterative learning control, multiresonant controller, grid converter, disturbance feedforward
Słowa kluczowe: sterowanie powtarzalne, sterowanie z uczeniem powtarzalnym, regulator wielorezonansowy, przekształtnik sieciowy, sprzężenie w
przód od zakłócenia

Introduction
It is not uncommon that the iterative learning community

members are convinced that their controllers are superior in
performance to the multiresonant control schemes. Surpris-
ingly, it also seems to prevail that the designers of multireso-
nant controllers for grid converters and true sine wave invert-
ers are often not aware that there exists a family of iterative
learning control (ILC) laws that is exceptionally simple in im-
plementation, and that the very basic ILC controller can of-
fer similar steady-state errors as the multiresonant controller.
Our goal is to make both groups of engineers familiar with
both techniques.

To begin with, it is necessary to select a common
nomenclature. There is no definitive consensus on naming
here. Historically, repetitive control was developed for contin-
uous repetitive processes, whereas iterative learning control
(ILC) was proposed within the context of batch repetitive pro-
cesses. After that naming conventions and categorizations
only got more and more complicated. The fact is that most
ILC techniques can be used successfully for both continu-
ous and batch repetitive processes. Moreover, some authors
refer to multiresonant controllers as something that falls out-
side repetitive control (e.g. [1, 2]), which is rather question-
able. We do not feel to be in the position to sort the naming
once and for all. However, for the purpose of this paper we
propose the following categorization: a repetitive controller is
any controller that takes into account (explicitly or implicitly)
the repetitiveness of the reference and the disturbance to re-
duce control errors. Within the repetitive control systems we
then distinguish two main techniques: multiresonant control
that can be applied only to continuous repetitive processes
and iterative learning control that is somewhat more versatile
because it can be applied for any type of repetitive control
task. We would also like to clarify that ‘repetitive’ and ‘peri-
odic’, despite often being used interchangeably to character-
ize a signal, may be also used more specifically. All periodic
signals are repetitive ones, but not all repetitive signals have
to be periodic in a mathematical sense. For example, in laser
cutting machines the cutting itself is repetitive and should be

managed using a repetitive control technique, but the pro-
cess of positioning the tool for each cut can be non-repetitive
and thus would be governed by a non-repetitive controller.
The process itself is then repetitive, although the overall tra-
jectory for the tool does not have to be periodic. For the illus-
tration see Fig. 1. This is typical in batch processes, in which
we reset the initial conditions for each repetition. That is why
mutliresonant control is generally not suitable for batch pro-
cesses. However, if the initial state of the batch is equal to
its final state, as in Fig. 1), it is still possible to implement the
multioscillatory controller by setting its initial state equal to its
final state from the previous batch.

This paper deals with a continuous repetitive process of
energy conversion using a grid-tie converter and no state
resetting at the beginning of the pass (=period) is possible.
Therefore, the discussion of repetitive control for batch pro-
cesses is out of the scope and we focus on systems with
strictly periodic references and disturbances – systems eligi-
ble for multiresonant control as well as ILC. Both techniques
stem from the internal model principle as they both insert a
model of the periodic signal in the control loop.

This is neither a survey paper, nor does it contain pre-
viously unpublished control schemes. Nevertheless, we
strongly believe that there is a need for such a potentially
eye-opening case study – mainly to bring both parties to the
table, and maybe back to the drawing board.

Fig. 1. An example of a repetitive cutting process with a non-periodic
overall trajectory for a tool (cutting plus positioning).
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Fig. 2. A closed-loop control system.

Internal model principle
The internal model principle (IMP) is probably one of the

most important concepts regarding tracking control systems,
yet surprisingly it often remains obscure to many practition-
ers. For the sake of brevity, we are not going to retell herein
the whole theory for SISO and MIMO control systems. For
more details please refer e.g. to [3, 4, 5] or handouts [6, 7].
Nevertheless, to make the paper more complete, a simplified
analysis for an SISO system is presented, which is mostly
based on [6].

Let us consider the feedback control system depicted in
Fig. 2 and denote numerators and denominators as follows

(1) R(s) =
Nr(s)

Dr(s)

(2) Gc(s) =
Nc(s)

Dc(s)

(3) Gp(s) =
Np(s)

Dp(s)
,

where subscripts •r, •c and •p indicate the reference, the
controller and the plant, respectively. The purpose of the con-
troller is twofold. First, it has to provide stability of the closed-
loop system. Second, it should regulate the output y(t) in
a specified manner to meet the required performance. If the
objective is to force control error e(t) to decay asymptotically
towards zero

(4) lim
t→∞ e(t) = lim

s→0
sE(s) = 0 ,

the poles of E(s) have to be in the open left half plane, i.e.
�(s) < 0. Writing down the equation for the summation node
in Fig. 2, we get

(5) E(s) = R(s)− E(s)Gc(s)Gp(s) ,

which in turn gives

(6) E(s) =
1

1 +Gc(s)Gp(s)
R(s) .

Substituting (1)–(3), we produce the transfer function

(7) E(s) =
Dc(s)Dp(s)

Dc(s)Dp(s) +Nc(s)Np(s)

Nr(s)

Dr(s)
.

Now let us assume that the condition (4) has to be met for
the reference signal r(t) whose Laplace transform has poles
in the closed right half plane, i.e. �(s) ≥ 0. This is the
case of periodic signals, for which �(s) = 0. Obviously,
designing the controller only for asymptomatic stability of the
closed loop-loop system, by placing the closed-loop poles of

(8) Pcl(s) = Dc(s)Dp(s) +Nc(s)Np(s)

in the open left half plane, does not guarantee zero steady
state errors under Dr(s) with roots in the closed right half
plane. This is because these roots are also the poles of
(7). The only possibility to draw control errors towards zero

Fig. 3. An oscillatory element.

is then to cancel these poles using roots of Dc(s)Dp(s). If
some of these poles are not naturally present in the plant
itself (Dp(s)), they have to be introduced in the controller
(Dc(s)). The design workflow is then as follows:
1) decide on your reference signal shape, i.e. assume a spe-
cific Dr(s), also known as the generating polynomial;
2) identify roots of Dp(s);
3) if a minimalistic structure of a controller is expected, de-
sign its structure to have Dc(s) that introduces all the roots
of Dr(s) not present in Dp(s), i.e. build the missing part of
the generating polynomial into the controller;
4) design gains of the controller appropriately to move all the
roots of the closed-loop characteristic polynomial (8) into the
open left half plane.
It should be noted that the IMP lets you design the structure
of the controller, which is the step prior to the tuning proce-
dure.

Summarizing this section, the internal model principle
is indispensable in determining the minimal structure of the
controller required to get zero tracking errors for a given ref-
erence signal. Under R(s) having the poles in the closed
right half plane, limt→∞ e(t) = 0 can be expected if and
only if Dr(s) is a factor of the open-loop characteristic poly-
nomial Dc(s)Dp(s), i.e., there exists such an O(s) that
Dc(s)Dp(s) = Dr(s)O(s), and obviously all the closed-
loop poles are in the open left half plane. The resulting con-
troller provides

(9) E(s) =
O(s)Nr(s)

Dc(s)Dp(s) +Nc(s)Np(s)
,

which allows the control error to decay asymptotically to-
wards zero as all the poles of (9) are in the open left half
plane. Similar analyses can be done for input and output dis-
turbances [7], and their results lead to a more general formu-
lation of the internal model principle: if an input disturbance
or a reference have D(s) as the generating polynomial, the
controller that introduces the missing part of the generating
polynomial into the open-loop system can asymptotically re-
ject the effect of disturbance and cause the output to track
the reference.

It is worth noticing at this point that the IMP can be used
explicitly as described above to determine the structure of
the controller using a generating polynomial, as well as im-
plicitly to introduce an internal model of the reference or dis-
turbance signals in forms other than generating polynomials.
Such implicit models of signals are constructed iteratively in
the classic iterative learning controllers [8, 9], as well as in the
dynamic optimization based ones [10, 11, 12, 13]. The for-
mer ones are to be compared here in computer simulations
to the explicit multiresonant ones.

Model of the input using resonant/oscillatory elements
If the grid voltage is symmetrical and not distorted, it is

enough to implement PI current controllers in the rotating dq
reference frame aligned with the grid voltage space vector to
track sinusoidal reference currents. This is because the d-
and q-component are constant in the steady state, and inte-
gration (I) constitutes the model of a constant signal. How-
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Fig. 4. A comparison of Bode plots for G1(s) [on the top] and G2(s),
assuming ωn = 1 and ζ = 0.1.

ever, for a distorted grid voltage containing higher harmonics,
being a disturbance to the system, it is no longer possible to
track sinusoidal reference current, unless a model of the dis-
turbance is included in the controller. One of the techniques
to tackle this is to introduce oscillatory elements to the con-
troller. An oscillatory element shown in Fig. 3 has two state
variables

(10) G1(s) =
X1(s)

E(s)
=

ωns

s2 + 2ζωns+ ω2
n

and

(11) G2(s) =
X2(s)

E(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

,

where ζ is the damping ratio and ωn is the natural frequency
(precisely: angular frequency or pulsatance) of a harmonic
oscillator. To achieve a theoretically perfect tracking of a
given harmonics it is required to set ζ = 0. However, for
most applications this is impractical. It should be noted that
the amplitudes of both state variables x1 and x2 grow into
infinity if the pulsatance ωn cannot be totally eliminated from
the control error, e.g. due to the limitations on the actuator
or plant side. That is why some degree of damping is recom-
mended. This damping does not have to be constant – it is
common practice to vary it according to the state of the actu-
ator (in our case the converter), and increase it if the actuator
saturates [14].

If the oscillator is used as a part of an augmented full-
state feedback controller, both state variables x1 and x2 are
naturally taken as feedback variables. However, if one of the
variables is to be chosen for e.g. a proportional-resonant
(PR) controller (not of a full-state type), x1 should be used.
This can be clearly read from Fig. 4: G1(s) is a bandpass
filter, whereas G2(s) is a second order low-pass filter. Both
of them have the same bump at ωn, but the latter is not se-
lective. This selectiveness of the former filter is highly de-
sired, especially if expert/heuristic tuning methods are to be
involved.
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Fig. 5. The influence of pre-warping for 8.33
2π

Hz sampling [on the
top] and for the two times faster sampling (the expected resonant
frequency at 1 rad/s).

By discretizing G1(s) using e.g. the bilinear transform
(Tustin’s method), we shift the resonant frequency. This ef-
fect is not significant if the natural frequency of the oscilla-
tory element is far from the sampling frequency. However,
it is good practice to always correct for this effect, as this is
done offline and does not increase the complexity of the con-
troller itself. The procedure is called pre-warping the filter
design. The resonant frequency matching for bilinear trans-
form is achieved by shifting the ωn for the continuous-time
domain transfer function before discretization. The formula is

(12) ωn =
2

Ts
tan(ωd

Ts

2
) ,

and then we proceed with the regular bilinear transform sub-
stituting

(13) s ← Ts

2

1− z−1

1 + z−1
,

where Ts is the sampling time and ωd is the desired resonant
frequency for the discrete oscillator. For more details please
see [15, 16]. The effect of pre-warping is illustrated in Fig. 5.
Obviously, the mismatch increases along with the increas-
ing resonant frequency of the oscillatory element in respect
to the sampling frequency. If the Nyquist frequency and the
resonant frequency are more than one decade apart, the im-
provement is rather negligible for most control systems. How-
ever, if they are closer than one decade, pre-warping should
be employed to get the most from the oscillatory controller.
And as already mentioned, pre-warping costs us nothing in
terms of real-time implementation, therefore it is always bet-
ter to perform it – regardless of the placement of the resonant
frequency in respect to the Nyquist frequency.

To facilitate the comparison presented two sections for-
ward, it should be noted that introducing a delay to (10) or
(11) does not change their ability to generate a sinusoidal
signal. Also, a negative gain does not render the element
impractical, as the overall phase is the key point here – not
just a sign. For example, negative gains for oscillatory terms
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Fig. 6. A universal periodic signal generator.

are common when an LQR is used to tune the controller. The
exemplary resulting sinusoidal waveform generators, such as

(14) G3(s) = G1(s)e
−s 2π

ωn

or

(15) G4(s) = −G1(s)e
−s π

ωn ,

could be used as a replacement for G1(s). Obviously, we do
not introduce additional half-cycle or full-cycle delays to the
oscillatory term in a regular resonant controller. This would
hamper the innate ability of an oscillatory controller to correct
the control signal without the necessity to wait an entire pass
(=period of the reference signal). However, we will use them
as viable alternatives while demonstrating similarities to the
ILC.

Model of the input using a universal periodic signal gen-
erator

Another approach to creating an internal model of the
repetitive signal is to use the universal periodic signal gener-
ator shown in Fig. 6. Its transfer function is as follows

(16) G5(s) =
1

esT − (1− γ)
,

where T is the period of the reference signal and γ is the
forgetting factor. Note that for γ = 0 this system simply inte-
grates in the pass to pass direction. Its discrete representa-
tion is as follows

(17) x(k, p) = (1− γ)x(k − 1, p) + e(k − 1, p) ,

where k is the pass index and p is the sample number along
the pass.

Are they equivalent or just similar?
Let us start from the definition of the hyperbolic sinus

(18) sinh(
sT

2
) � e

sT
2 − e

−sT
2

2
=

esT − 1

2e
sT
2

and an infinite product representation of the hyperbolic sinus
[17]

(19) sinh(
sT

2
) =

sT

2

∞∏
n=1

(
1 +

(
sT

2πn

)2
)

.

Now, let us assume that we have an integral-multiresonant
controller C1(s) to introduce an internal model of any peri-
odic signal

(20) C1(s) =
k0
s

+

∞∑
n=1

kns(
s

nω1

)2

+ 1
,

where ω1 = 2π
T is the fundamental pulsatance. Its generat-

ing polynomial is as follows
(21)

D1(s) = s
∞∏

n=1

((
s

nω1

)2

+ 1

)
= s

∞∏
n=1

((
sT

2πn

)2

+ 1

)
.
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Fig. 7. The step response of (23).

Whereas a controller based on the universal signal generator
(16), assuming γ = 0 and taking into account (18) and (19),
can be rewritten in the form of

(22) C2(s) = kRCG5(s)
γ=0
=

kRC
1
T e

− sT
2

s
∏∞

n=1

((
sT
2πn

)2
+ 1

) .

A similar analysis has been proposed in [18]. The authors
additionally assumed that the multiresonant controller C1(s)
is tuned specifically to mimic the ILC controller C2(s). This
seems to be impractical, because the computational bur-
den imposed by the multioscillatory controller is significantly
higher than the one imposed by the ILC algorithm. These
controllers are clearly not equivalent, because there are dif-
ferent degrees of freedom of the tuning procedure: k0, k1,
. . ., kn for the multioscillatory controller and just a single gain
kRC for the alternative iterative learning controller. Never-
theless, both of them introduce exactly the same generating
polynomials in the continuous time domain. Thus, both of
them fall into the same category of solutions derived (whether
deliberately or unintentionally) within the same frame of IMP.

The ILC controller besed on the universal signal gener-
ator from Fig. 6 introduces an innate delay of one reference
and/or disturbance signal period. This delay might seem to
be halved in (22), but obviously they have to be equivalent as
(22) is equivalent to (16) for γ = 0. Note that the ‘missing’
half-cycle delay is introduced by the infinite product in (22).
The step response of

(23) G6(s) =
1

s
∏25

n=1

((
s

2πn

)2
+ 1

)
is shown in Fig. 7.

As demonstrated, in their basic form both controllers (the
multiresonant one and the ILC) introduce exactly the same
generating polynomials and therefore suffer from exactly the
same unlimited control signal growth if the selected harmon-
ics cannot be suppressed to zero in the control error. To make
both controllers more robust, damping is necessary. A simple
forgetting as in (16) is similar to keeping constant damping for
all frequencies. This is illustrated in Fig. 8 and Fig. 9. Forget-
ting in the ILC does not have to be equal for all frequencies.
It is common practice to design a problem-specific digital fil-
ter Q(z) to introduce a frequency-dependent forgetting. The
resulting control law is

(24) x(k, p) = Q(z)x(k − 1, p) + kRCe(k − 1, p) .

Similar behaviour can be achieved in the multioscillatory con-
troller by selecting a different ζ and different gains kn for each
oscillator. This is illustrated in Fig. 10, Fig. 11 and Fig. 12.
This means that the flexibility of the multioscillatory controller
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Fig. 8. Frequency characteristics for different values of γ in the ILC.

0 2 4 6 8 10

Frequency [Hz]

-10

0

10

20

30

40

50

M
ag

ni
tu

de
 [d

B
]

Fig. 9. Frequency characteristics for different values of ζ in the mul-
tioscillatory controller.
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Fig. 10. Frequency characteristics for different filters Q(z) in the ILC.
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Fig. 11. Frequency characteristics for different variable ζ in the mul-
tioscillatory controller (here ζ is assumed to be proportional to the
resonant frequency).

coming from the possibility of selecting individual gains and
damping ratios for each oscillatory term is also present in the
ILC in the form of the Q(z) filter, which can be freely de-
signed to get a desired frequency response. Our observation
is that designing individual gains and damping ratios in the
multioscillatory controller is usually equally cumbersome as
designing the characteristics of the Q(z) filter. In our opin-
ion none of the approaches can be called a definite winner in
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Fig. 12. Frequency characteristics for different variable kn in the
multioscillatory controller (off-the-cuff functions indicated in the le-
gend box).

Table 1. Selected parameters of the grid-tie converter
Parameter Value

Nominal power 250 kVA
DC link voltage 500 V

Filter inductance 120μH
Filter resistance 4mΩ

this regard. However, there is one clear distinction between
these two approaches – the delay. The ILC controller (22)
has the intrinsic delay of one period of the fundamental fre-
quency, and this delay cannot be shaped during the design
procedure. On the other hand, the multioscillatory controller
(20) introduces zeros and the control signal is modified in-
stantaneously, i.e. after one sample period. In this respect,
we tend to believe that the multioscillatory controller may be
more beneficial in selected applications.

Periodic disturbance rejection in a grid-tie converter
Both controllers have been tested in a grid-tie converter

shown in Fig. 13 of key parameters collated in Tab. 1.
The test scenario assumes introducing significant dis-

tortion in the grid voltage – the ideal sinusoidal grid voltage
is instantaneously changed into a trapezoidal one, of a har-
monic content shown in Fig. 14, and then relaxed back to the
sinusoidal one. The control algorithm includes a phase lock
loop (PLL) to track the phase of the fundamental component
of the distorted three-phase grid voltage. The original ‘PLL
(3ph)’ block available in MATLAB has been used without any
modifications. The shape of the grid current under distorted
conditions if no repetitive control is switched on, i.e. only the
PI controllers are on and the DFF is deactivated, is shown
in Fig. 15. Steady-state grid currents for multioscillatory con-
trollers (6th, 12th, 18th harmonics and ζ = 0.01) are juxta-
posed in Fig. 16 with the grid currents shaped by the iterative
learning controller (γ = 0.01). The corresponding transient
states are shown in Fig. 17. The evolution of the MSE (mean
square error calculated over the entire period of the reference
current) is shown in Fig. 18. Regarding the selection of the
resonant frequencies for this experiment, it should be men-
tioned that e.g. the 5th harmonic (negative sequence) and
the 7th harmonic (positive sequence) both transform into the
6th harmonic in the rotating reference frame aligned with the
fundamental harmonic.

In this particular comparison, it might seem that the mul-
tioscillatory controller (MOSC) is superior. However, it has
to be noted that both controllers are tuned by guessing and
checking here. Therefore, this might rather suggest that the
MOSC is easier to handle by guessing and checking and in-
deed this is our impression. It was also observed that as-
suming the goal of comparative steady states for both con-
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Fig. 13. The topology of the current control system.

trollers, we tended to run into numerical problems earlier in
the case of the MOSC. This is related to the problematic os-
cillatory element implementation near the Nyquist frequency.
The control signal may be corrected faster in an MOSC based
system, yet this comes at the expense of greater sensitivity
of the performance to the controller discretization process.

Let us summarize our observations in Tab. 2. The pro-
posed ratings should be regarded as some kind of soft guide-
lines. One should not interpret them as definite ones.

Periodic disturbance feedforward in the context of repet-
itive control

There is a notion among repetitive control practitioners,
especially prevalent among ILC engineers, that a successful
control law should focus on IMP. This is true, but only par-
tially. It should be noted that a more logical design flow is
one that starts from a feedforward controller(s), which is (are)
then augmented using a feedback controller. The feedback
controller is there only to compensate for all the uncertainties.

In the case of the grid-tie converter, theoretically it is pos-
sible to design an ideal disturbance feedforward (DFF) path,
and its synthesis requires the knowledge of only one state

variable, namely the DC link voltage, and the grid voltage, as
in

(25) vd = Rid + L
did
dt

− ω1Liq + vcd

(26) vq = Riq + L
diq
dt

+ ω1Lid + vcq ,

where: [vd, vq] is the grid voltage, [vcd, vcq] is the con-
verter voltage and and ω1 denotes the angular speed of the
reference frame equal to the fundamental grid angular fre-
quency. Both of them are already measured in the system:
the grid voltages to facilitate a PLL, which is needed to orient
the reference frame, and the DC link voltage to implement a
DC-link voltage control loop. To get sinusoidal grid currents
it is enough to add the measured grid voltage (i.e. the distur-
bance), scaled using a DC-link voltage value, to the converter
control signal, as in

(27) vrefcd = vd︸︷︷︸
DFF

− (Rid + L
did
dt

)︸ ︷︷ ︸
PI

+ω1Liq︸ ︷︷ ︸
decoupling network
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Table 2. Comparison of ILC and MOSC

���������Feature
Controller

ILC with γ ILC with Q(z) MOSC (a few of terms) MOSC (many of terms)

computational burden low medium high very high
memory burden medium medium low low
analytical tuning cumbersome non-existent challenging very challenging

expert tuning easy challenging practical challenging
responsiveness low low high high

speed vs. robustness poor poor good good
robustness to grid freq. fluct. very poor∗ very poor∗ good† good†

sensitivity to delays easy to compensate‡ easy to compensate‡ poor§ very poor§

recognition in robotics high high low low
recognition in power electronics low low high high

∗ unless an additional adaptive fractional delay filter is implemented, which has already been demonstrated in the case of grid
converters [2, 19, 20, 21, 22];
† very good if the oscillatory terms are of an adaptive type, which is fairly easy to achieve because the grid frequency is
already available thanks to the PLL;
‡ by modifying (24) into x(k, p) = Q(z)x(k − 1, p) + kRCe(k − 1, p+ p0) and setting a proper value of p0 [2, 19];
§ unless oscillatory terms are individually modified to obtain the phase lead [23, 16, 24] (with corrections in [25]).
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Fig. 14. A distorted grid voltage and its harmonic content (scaling:
relative, linear).
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Fig. 15. Grid current under non-repetitive control.

(28) vrefcq = vq︸︷︷︸
DFF

− (Riq + L
diq
dt

)︸ ︷︷ ︸
PI

−ω1Lid︸ ︷︷ ︸
decoupling network

.

This DFF is already present in most practical solutions of grid
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Fig. 16. A steady-state grid current under ILC (with Q(z) =
0.25z + 0.5 + 0.25z−1) and MOSC (with 6th, 12th and 18th har-
monics cancellation) comparison.

converters – it is needed to synchronise converter voltage
with the grid voltage before switching on the current con-
trollers to avoid an initial current surge. If no DFF is imple-
mented, the measured grid voltage represented in the dq ref-
erence frame has to be used to determine the initial condi-
tions for integrators in the PI controllers shown in Fig. 13.
The theoretical full DFF for this converter is of a static form,
i.e. it does not require any dynamical internal model to be im-
plemented to fully reject the disturbance (here the distorted
grid voltage) and totally eliminate any transient states related
to this disturbance. This is illustrated in Fig. 19.

Unfortunately, any practical digital implementation of this
DFF is bound to introduce a delay of at least one sample time
period and this renders the disturbance rejection partial only
(see Fig. 19). That is why it is necessary to support the DFF
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Fig. 17. A transient grid current under ILC and MOSC comparison.
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Fig. 18. RMSE evolution under ILC and MOSC comparison showing
the typically slower responsiveness of the ILC system.
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Fig. 19. A transient grid current under DFF, delayed DFF and de-
layed DFF with MOSC comparison (also to be compared with no
DFF scenario in Fig. 17).

with e.g. an MOSC in order to achieve an undistorted current
in the steady state (see Fig. 19), i.e. to have
(29)

vrefcd = vdelayedd︸ ︷︷ ︸
partial DFF

− (v′d +Rid + L
did
dt

)︸ ︷︷ ︸
PI+MOSC

+ω1Liq︸ ︷︷ ︸
decoupling network

(30)

vrefcq = vdelayedq︸ ︷︷ ︸
partial DFF

− (v′q +Riq + L
diq
dt

)︸ ︷︷ ︸
PI+MOSC

−ω1Lid︸ ︷︷ ︸
decoupling network

,

where

(31) v′d = vdelayedd − vd
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(32) v′q = vdelayedq − vq

represent the uncertainties (here measurement errors, inter
alia, due to the delay of the digital control system). The DFF
considerably improves transient states – the MOSC is here
only to compensate for the innate delay of the digital control
system related to sampling and potential signal conditioning
(e.g. anti-aliasing filters).

Conclusions
The iterative learning control and the multioscillatory

(a.k.a. multiresonant) controllers are both based on the same
principle of internal model, and both in their basic form intro-
duce exactly the same generating polynomials to the con-
troller. This is not an original nor a ground-breaking conclu-
sion, yet often an under-recognized one. Both approaches
have their strengths and weaknesses and none of them
should be regarded as the definitive winner for power elec-
tronics control engineers. Moreover, more of these weak-
nesses are common for both types of the discussed repeti-
tive controllers and selecting one of them is often predicated
on the familiarity with one type and the lack of such familiar-
ity with the other type. This paper is aimed at making this
choice more fact-based and reducing the familiarity-induced
bias. To save the paper from being overstuffed, only key plots
are included. Many other ILC, MOSC and DFF test scenarios
can be generated using the numerical models published on
MATLAB Central [26].
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