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Abstract. The notion of normal positive electrical circuits is introduced and some their specific properties are investigated. New state matrices of 
positive linear systems and electrical circuits are proposed and their properties are analyzed. It is shown that positive electrical circuits with diagonal 
state matrices are normal for all values of resistances, inductances and capacitances  
 
Streszczenie. W artykule zaproponowano pojęcie dodatniego obwodu elektrycznego oraz przeanalizowano specjalne własności dodatnich układów 
i obwodów elektrycznych. Wykazano, że dodatnie obwody elektryczne z diagonalnymi macierzami stanu są zawsze normalne dla wszystkich 
wartości rezystancji, indukcyjności i pojemności. (Normalne dodatnie układy liniowe i obwody elektryczne). 
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Introduction 
 A dynamical system is called positive if its trajectory 
starting from any nonnegative initial state remains forever in 
the positive orthant for all nonnegative inputs. An overview 
of state of the art in positive systems theory is given in the 
monographs [2, 15]. Variety of models having positive 
behavior can be found in engineering, economics, social 
sciences, biology and medicine, etc. 
 The notions of controllability and observability have 
been introduced by Kalman in [28, 29] and they are the 
basic concepts of the modern control theory [1, 7, 8, 11, 12, 
20, 27, 31]. The controllability, reachability and observability 
of linear systems and electrical circuits have been 
investigated in [9, 10, 16, 18, 19, 30]. The asymptotic 
stability of positive standard and fractional linear systems 
has been addressed in [6, 15, 26]. 
 Cholewicki has been the pioneer in Poland of the 
application of the theory of matrices in the analysis and 
synthesis of electrical circuits [3, 4, 5]. 
 The specific duality and stability of positive electrical 
circuits have been analyzed in [21] and positive systems 
and electrical circuits with inverse state matrices in [17]. 
The stability of continuous-time and discrete-time linear 
systems with inverse state matrices has been investigated 
in [25]. The reduction of linear electrical circuits with 
complex eigenvalues to linear electrical circuits with real 
eigenvalues has been considered in [24]. 
 Standard and positive electrical circuits with zero 
transfer matrices have been investigated in [22] and the 
normal positive electrical circuits have been introduced  in 
[13].  
 In this paper the normal positive linear systems and 
electrical circuits are investigated. 
 The paper is organized as follows. In section 2 some 
preliminaries concerning positive linear continuous-time 
systems are recalled. Some properties of the transfer 
matrices of positive linear systems are presented in section 
3. Normal positive linear systems are analyzed in section 4. 
Normal positive linear electrical circuits are introduced and 

investigated in section 5. Concluding remarks are given in 
section 6. 

The following notation will be used:   - the set of 

real numbers, mn  - the set of mn  real matrices, 
mn

  - the set of mn  real matrices with nonnegative 

entries and 1
  nn , nM  - the set of nn  Metzler 

matrices (real matrices with nonnegative off-diagonal 
entries), nI - the nn  identity matrix. 
 

Preliminaries 
Consider the continuous-time linear system 
(1a) BuAxx  ,   
(1b) Cxy  , 

where ntxx  )( , mtuu  )( , ptyy  )(  are 

the state, input and output vectors and nnA  , 
mnB  , npC  . 

Definition 1. [15] The linear system (1) is called (internally) 

positive if ntx )(  and pty )( , 0t  for any initial 

conditions nx 0  and all inputs  mtu )( , 0t . 

Theorem 1. [15] The linear system (1) is positive if and only 
if 

(2)  nMA , mnB 
 , npC 

 . 

Definition 2. [15] The positive linear system (1) for 
0)( tu  is called asymptotically stable if 

(3)  0)(lim 


tx
t

 for all nx 0 . 

Theorem 2. [15] The positive linear system (1) for 0)( tu  

is asymptotically stable (the matrix A is Hurwitz) if and only 
if all coefficients of the characteristic polynomial 

(4)   01
1

1 ...]det[)( asasasAsIsp n
n

n
nn  

  
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are positive, i.e. 0ka  for 1,...,1,0  nk . 

We shall consider the positive system (1) with the matrix A 
of the form 

(5)  

.1,...,1  ,0
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Theorem 3. [15] The positive system with (5) is 
asymptotically stable if and only if 

(6)  0Re ks  for nk ,...,1 . 

Definition 3. [15] The positive system (1) is called 
reachable in time ],0[ ft  if for any given final state 

n
fx   there exists an input mtu )(  for ],0[ ftt  

that steers the state )(tx  from zero initial state 0)0( x  to 

the final state fx , i.e. ff xtx )( . 

Definition 4. [15] A real matrix nnA 
  is called 

monomial if each its row (column) contains only one 
positive entry and the remaining entries are zero. 
Theorem 4. [15] The positive system (1) is reachable if the 
matrix 

(7)  
ft

TATA
f deBBeR

0

 , 0ft  

is monomial. 
The input 

(8)  11)(
)( mx

ff
tftTAT xReBtu 


 , ],0[ ftt  

steers the state )(tx  of the system from 0)0( x  to 

ff xtx )( . 

The positive system (1) is reachable in time ],0[ ft  if and 

only if nMA  is diagonal and mnB 
  has m linearly 

independent monomial columns. 
Definition 5. [15] The positive system (1) is called 

observable in time ],0[ ft  if knowing the output pty )(  

and the input mtu )(  it is possible to find the unique 

initial condition nx )0( . 

Theorem 5. [26] The positive system (1) is observable in 
time ],0[ ft  if the matrix 

(9)  
ft

ATTA
f dCeCeO

0

 , 0ft  

is monomial. 
 

Transfer matrices of positive linear systems 
 The transfer matrix of the positive linear system (1) is 
given by 

(10) )(][)( 1 sBAsICsT mp
n

  , 

where )(smp  is the set of mp  rational matrices in s. 

Theorem 6. If the matrix nMA  given by (5) is 

asymptotically stable (Hurwitz) and mnB 
 , npC 

  

then all coefficients of the transfer matrices 

(11) BAsICsT n
1

11 ][)(  , BAsICsT n
1

22 ][)(   

are nonnegative. 
Proof. If 1A  is Hurwitz and 0ka , 1,...,1  nk  then the 

entries of the inverse matrix (12) are rational functions with 
nonnegative coefficients. 
 

(12) 
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Therefore, if mnB 
  and npC 

  then all coefficients 

of the transfer matrix )(1 sT  are nonnegative. 

The proof for )(2 sT  is similar (dual). □ 

Example 1. Consider the transfer function of the positive 
system (10) with 
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In this case using (10) and (13) we obtain 

(14)
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The transfer function is minimal-phase since its zeros 
5.11 z , 32 z  are negative. After cancellation of the 

zero 32 z  with the pole 33 s  we obtain 

(15) .
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In this case we have 

(18) nBABAB 

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and 

(19) 31
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Therefore, the standard pair ),( 11 BA  is controllable, but the 

pair ),( 11 CA  is unobservable. 

Consider the SISO (single-input ( 1m ) single-output 

( 1p )) positive linear system with 1A  given by (5) and 

(20) nB 
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 1

1 . 

It is easy to check that 

(21) nBABAB n  ]rank[ 1
1

1111   if 0ka , 

  1,...,1  nk . 

Let 1z , 2z , …, 1nz  be the zeros (the roots of 0)( sn ) 

and 1p , 2p , …, np  the poles (the roots of 0)( sd ) of 

the transfer function 

(22) 
)(

)(
][)( 1

1
111 sd

sn
BAsICsT n   . 

Theorem 7. If 
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then at least one zero of (22) is equal to its poles. 
Proof. It is well-known that if (23) holds then the zeros and 
poles cancellation occurs in (22). It happens only if at least 
one zero of (22) is equal to its poles. □ 
Now let us consider the SISO positive system with 2A  

given by (5) and 

(24) nB 2 , nC 
 1

2 ]100[  . 

It is easy to check that 
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 if 0ka , 1,...,1  nk . 

Theorem 8. Let 1p , 2p , …, np  be the poles and 1z , 2z , 

…, 1nz  the zeros of the transfer function 

(26) 2
1

222 ][)( BAsICsT n
  

If 

(27) nBABAB n  ]rank[ 2
1

2222   

then at least one zero of (26) is equal to its poles. 
Proof. The proof is dual to the proof of Theorem 7. 
 
Normal positive linear systems 
 Consider the transfer matrix of the form 

(28a) )(
)(

)(
)( s

sd

sN
sT mp , 
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where ][)( ssN mp  is the polynomial matrix and )(sd  

is the least common denominator of the form 

(28b) 01
1

1 ...)( asasassd n
n

n  
 . 

 
Definition 6. The positive linear system with (28) is called 
normal if every nonzero second order minor of )(sN  is 

divisible (with zero remainder) by the polynomial )(sd . 

The normal systems are insensitive to the change of their 
parameters [14]. 
Definition 7. The state matrix A of the linear system (1) is 
called cyclic if its minimal polynomial )(s  is equal to its 

characteristic polynomial 

(29) ]det[)( AsIs n  . 

The minimal polynomial )(s  is related to its characteristic 

polynomial )(s  by [14] 
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order minors of the matrix ][ AsIn  . 
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are 1)(1  sDn . It is easy to see that the minors 

corresponding to the first column and the n-th row of the 
matrix ][ 1AsIn   and to the first row and the n-th column of 

the matrix ][ 2AsIn   are equal to 121 ... naaa . Therefore, 

1)(1  sDn  and the matrices 1A  and 2A  are cyclic. □ 

Theorem 10. The positive linear system with the matrices 

1A  and 2A  defined by (5) is normal for any mnB 
  and 

npC 
 . 

Proof. By Definition 6 the positive linear system with 1A  

( 2A ) defined by (5) and any mnB 
 , npC 
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Note that the minors of the matrices B and C are 
independent of s. Using (32) for the matrix BAsIC adn ][ 1  

it is easy to see that its every nonzero second order minor 
is divisible by ]det[ 1AsIn   since by Theorem 9 the matrix 

1A  ( 2A ) is cyclic. Therefore, the positive linear system with 

1A  ( 2A ) and any mnB 
 , npC 
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300

20

01

]det[)(

23

2

1

13









ssssss

s

as

as

AsIsd
 

and 

(35) 























)2)(1(00

)1()3)(1(0

)3()3)(2(

][ 2

211

13

ss

sass

aasass

AsI ad  

we obtain 

(36a)

,
)()(

)()(

)2)(1(00

)1()3)(1(0

)3()3)(2(

][)(

2221

1211

3231

2221

1211

2

211

232221

131211

113





























































snsn

snsn

bb

bb

bb

ss

sass

aasass

ccc

ccc

BAsICsN ad

 

where 
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(36b)

.)3)(1(

)3)(2()2)(1(

)3()1()(

,)3)(1(

)3)(2()2)(1(

)3()1()(

,)3)(1(

)3)(2()2)(1(

)3()1()(

,)3)(1(

)3)(2()2)(1(

)3()1()(

212132222222

211222233222

21122222322222

212131212221

211121233121

21121222312121

112132221222

111222133222

11122122322212

112131211212

111121133121

11121122312111

caabbsscb

sscbbsscbb

scabscabbsn

caabbsscb

sscbbsscbb

scabscabbsn

caabbsscb

sscbbsscbb

scabscabbsn

caabbsscb

sscbbsscbb

scabscabbsn






















 

Therefore, the positive linear system with (33) is normal. 
Note that the matrices (5) for 0ka , 1,...,1  nk  are 

equal and have the diagonal form 

(37) ]diag[ 21 nd sssA   . 

In this particular case Theorem 10 has the following form. 
Theorem 11. The positive linear system with (37) and any 

mnB 
 , npC 

  is normal. 

 
5. Normal positive linear electrical circuits 
 Consider linear electrical circuits composed of resistors, 
capacitors, coils and voltage (current) sources. As the state 
variables (the components of the state vector )(tx ) we 

choose the voltages on the capacitors and the currents in 
the coils. Using Kirchhoff’s laws we may describe the linear 
circuits in transient states by the state equations 

(38a) BuAxx  ,  

(38b) Cxy  , 

where ntxx  )( , mtuu  )( , ptyy  )(  are 

the state, input and output vectors and nnA  , 
mnB  , npC  . 

Definition 8. [26] The linear electrical circuit (38) is called 

(internally) positive if the state vector ntx )(  and output 

vector pty )( , 0t  for any initial conditions nx 0  

and all inputs  mtu )( , 0t . 

Theorem 12. [26] The linear electrical circuit (38) is positive 
if and only if 

(39) nMA , mnB 
 , npC 

 . 

The transfer matrix of the linear electrical circuit described 
by (38) can be always written in the form (28a). 
Definition 9. The positive linear electrical circuit is called 
normal if every nonzero second order minor of )(sN  is 

divisible by )(sd . 

Example 3. Consider the linear electrical circuit shown on 
Fig. 1 with given resistances kR , inductances kL , 

3,2,1k  and source voltages 1e , 2e . 

 

 
Fig. 1. Electrical circuit of Example 3 
 
Using the mesh method for the electrical circuit we obtain 

(40a) 
















































2

1

2

1

2221

1211

2

1

2221

1211

e

e

i

i

RR

RR

i

i

dt

d

LL

LL
, 

where )(11 tii  , )(22 tii   are the mesh currents and 

(40b) 
.  ,,

  ,  ,  ,

3222321123111

3222321123111

LLLLLLLLL

RRRRRRRRR




 

The inverse matrix 

(41) 





























1121

1222

32321

1

2221

12111

)(

1

LL

LL

LLLLL

LL

LL
L

 

has all positive entries. 
From (40a) we obtain 

(42a) 


























2

1

2

1

2

1

e

e
B

i

i
A

i

i

dt

d
, 

where 

(42b)

.

,
)(

)(

)(

1

221

233211331

233213312

32321

2221

12111







































LB

RLRRLRLRL

RLRLRLRRL

LLLLL

RR

RR
LA

 

Note that if 
(43) 1331 RLRL   and 02332  RLRL  

then the matrix A has the form of the matrix 1A  defined by 

(5) and for 

(44) 2332 RLRL   and 1331 RLRL   

the form of the matrix 2A . In both cases the electrical circuit 

is positive. 
These considerations can be easily extended to n-mesh 
linear electrical circuits. 
Following [26] let us consider the linear electrical circuit 
shown in Fig. 2 with given resistances kR , 8,...,1k , 

inductances 2L , 4L , 6L , 8L , capacitances 1C , 3C , 5C , 

7C  and source voltages 0e , 2e , 4e , 6e , 8e . 
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Fig. 2. Positive electrical circuit 
 
Using Kirchhoff’s laws we may write the equations 

(45a) 
dt

du
CRue k

kkk 0 , 7,5,3,1k , 

(45b) 
dt

di
LiRee

j
jjjj 0 , 8,6,4,2j . 

The equations can be written in the form 

(46a) Be
i

u
A

i

u

dt

d


















, 

where 

(46b) 





















7

5

3

1

u

u

u

u

u , 





















8

6

4

2

i

i

i

i

i , 

























8

6

4

2

0

e

e

e

e

e

e  

and 

(46c) 

.

1
000

1

0
1

00
1

00
1

0
1

000
11

  ,

0000
1

0000
1

0000
1

0000
1

  ,

,
1111

diag

88

66

44

22

2

77

55

33

11

1
2

1

8

8

6

6

4

4

2

2

77553311















































































LL

LL

LL

LL

B

CR

CR

CR

CR

B
B

B
B

L

R

L

R

L

R

L

R

CRCRCRCR
A

The matrix 8MA  is diagonal and asymptotically stable 

and 58
B . Therefore, the electrical circuit is positive for 

any values of the resistances, inductances and 
capacitances and from Theorem 11 we have the following 
important theorem. 
Theorem 13. Positive linear electrical circuit with diagonal 

matrix nMA  and mnB 
 , npC 

  is normal for 

any values of the resistances, inductances and 
capacitances. 
 
Concluding remarks 
 The notion of normal positive electrical circuit has been 
introduced and some specific properties of this class have 
been investigated. New state matrices of the positive linear 
systems and electrical circuits have been introduced and 
their properties have been analyzed (Theorems 7, 8, 9, 10 
and 11). It has been shown that the positive electrical 
circuits with diagonal state matrices are normal for all 
values of their resistances, inductances and capacitances 
(Theorem 12). The considerations have been illustrated by 
numerical examples. 
 The considerations can be extended to fractional linear 
systems and electrical circuits. 
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