
144 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 6/2018

Remigiusz OLEJNIK

West Pomeranian University of Technology, Szczecin

doi:10.15199/48.2018.06.28

Network Stack of the HopeMesh Experimental Wireless Mesh
Network

Abstract. The article presents an original proposal of a network stack for an experimental wireless mesh network. The stack consists of five layers
similar to those of the well-known hybrid approach by Tanenbaum. The physical layer heavily depends on used radio modules; the data link layer
uses the Hamming code and the CRC-16 checksum; the network layer is based on the B.A.T.M.A.N. protocol; both transport and application layers
are simplified. The paper is concluded with a set of experiments proving the proper behaviour of the entire network stack.

Streszczenie. Artykuł przedstawia oryginalną propozycję stosu sieciowego dla eksperymentalnej sieci HopeMesh. Stos składa się z pięciu warstw
analogicznych do dobrze znanego hybrydowego podejścia Tanenbauma. Warstwa fizyczna ściśle zależy od użytych modułów radiowych; warstwa
łącza danych używa kodowania Hamminga oraz sumy kontrolnej CRC-16; warstwa sieciowa oparta jest o protokół B.A.T.M.A.N.; warstwy:
transportowa oraz aplikacji są uproszczone. Artykuł prezentuje ponadto wykonane badania dowodzące poprawności funkcjonowania całego stosu.
(Stos sieciowy eksperymentalnej bezprzewodowej sieci o topologii kratowej HopeMesh).

Keywords: Wireless Mesh Network, network stack, wireless networks.
Słowa kluczowe: sieci bezprzewodowe o topologii kratowej, stos sieciowy, sieci bezprzewodowe.

1. Introduction
 According to Akyildiz [1], “a Wireless Mesh Network
(WMN) consists of mesh routers and clients where mesh
routers have minimal mobility and form a mesh of self-
configuring, self-healing links among themselves”.
 The article presents a network stack that has been
designed and implemented for an experimental wireless
mesh network. Most of existing WMNs applications depend
on standard network devices that are part of the personal
computer environment with their operating system. WMNs
that are implemented as general-purpose embedded
systems are rare.
 HopeMesh Experimental Wireless Mesh Network is
composed of simple nodes based on a AVR ATmega162
microcontroller with an external 62256 SRAM memory chip
that offers additional 32 KiB and a HopeRF RFM12B radio
module. The available memory can keep routing data for a
maximum number of 2838 nodes, as one entry in the
network routing table requires 11 bytes in total.

2. An Overview of Existing Network Stack Solutions for
Embedded Systems
 Currently, there are many available network stacks that
can be used as a part of a AVR-based mesh network.
 Tuxgraphics TCP/IP stack, 3rd generation [2] was
designed for distributed sensors with a web server. Its
serious disadvantage is the limitation to one IP packet only.
Moreover, only the enc28j60 Ethernet module is supported
and wireless networking is impossible.
 An open source BACnet protocol stack for embedded
systems [3, 4] consists of an application layer, a network
layer, and media access control (MAC) layer
communications services for an embedded system or an
operating system. There is an existing port for ATmega168
available.
 Atmel Lightweight Mesh [5, 6] software stack is an
easy to use, proprietary, low power wireless mesh network
protocol. It has been designed to address the needs of a
wide range of wireless connectivity applications, including
remote control, alarms and security, automatic meter
reading, home and commercial building automation, toys,
and educational equipment.
 OpenRF™ is a micro agnostic wireless protocol stack
for embedded applications [7]. It comprises three layers,
including OpenRF MAC, RadioAPI, and MicroAPI. It was
designed in such a way to work with microcontrollers

ranging from Microchip's PIC16 series, Atmel AVR and
SiLabs 8051 to new Renesas RX62N and RL78 series.
 uIP (micro IP) and lwIP [8, 9, 10, 11] were designed by
Adam Dunkels from the "Networked Embedded Systems"
group at the Swedish Institute of Computer Science. uIP is
aimed at tiny 8- and 16-bit microcontrollers and requires
very small amounts of code and RAM. It has been ported to
several platforms, including DSP platforms. Supported
protocols include HTTP, SMTP, FTP, and telnet. lwIP is a
stack for embedded systems, used by Altera, Analog
Devices, Xilinx, Honeywell and Freescale Semiconductor.
Numerous protocols such as PPP, ARP, IP, ICMP, IGMP,
UDP, TCP, DNS, SNMP, DHCP are supported by lwIP.
 Contiki [12] is an operating system designed for
networked, memory-constrained systems. It is focused on
low-power wireless Internet of Things devices. The system
was initially developed by Adam Dunkels in 2002. Further
development was done by a worldwide team of developers
from Texas Instruments, Atmel, Cisco, ENEA, ETH Zurich,
Redwire, RWTH Aachen University, Oxford University,
SAP, Sensinode, Swedish Institute of Computer Science,
ST Microelectronics, Zolertia, and many others. Contiki
provides three network mechanisms: uIP, uIPv6, and Rime
stacks. The uIP TCP/IP stack provides IPv4 networking, the
uIPv6 provides IPv6 networking, while the Rime stack is a
set of custom lightweight networking protocols designed for
low-power wireless networks. Contiki can be run on
numerous microcontrollers. such as ARM and AVR families
from Atmel, dsPIC and PIC32 from Microchip, MSP430,
CC2430, CC2538, CC2630 and CC2650 from Texas
Instruments, and STM32 from STMicroelectronics.
 All of the above-mentioned network stack solutions
implement standard protocols, such as IP, TCP, UDP, and
HTTP. These protocols are not best suited to Wireless
Mesh Network applications. Moreover, these ready network
stacks do not support specific hardware. The only solution
in such a case is to develop an own lightweight network
stack, that will support hardware used along with required
higher level protocols.

3. Proposal of the Network Stack of the HopeMesh
Network
 The network stack designed for the HopeMesh network
is based on a hybrid network model by Tanenbaum [13] and
provides full functionality of five layers. The advantage of
the Tanenbaum’s model over the classic OSI model is a

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 6/2018 145

pragmatic approach to the network stack, having less layers
than its OSI pendant. This also fits constraints imposed by
the embedded architecture used in our HopeMesh
implementation.
 In this section, we discuss our modifications introduced
to the Tanenbaum’s network stack along with some
implementation details and the software used.

3.1. Layer 1 – Physical
 The physical layer is implemented using a wireless
technology by utilizing capabilities of the HopeRF RFM12B
low cost ISM band transceiver. This transceiver offers the
frequency-shift keying modulation (FSK) and operates on
one of ISM range frequencies – a 868 MHz version has
been used in our experiments. The output RF power was
set to 4 dBm (≈ 2.5 mW). The antenna used was a simple
quarter wavelength wire.
 This transceiver can only operate in a half-duplex mode.
Thus, a special care has to be taken when writing device
drivers for this module. The algorithmic solution to this
problem was already presented in another paper [14].

3.2. Layer 2a – Medium Access Control
 The Medium Access Control (MAC) sublayer was
implemented exactly as proposed by Tanenbaum [13] with
all his assumptions (Station Model, Single Channel
Assumption, Collision Assumption, Continuous Time and
Carrier Sense).
The actual MAC frame format is presented in Figure 1. The
frame consists of four parts:
 Preamble: 2 bytes (values 0xAA) – this pattern is the bit
representation of alternating 0 and 1 values; this helps the
receiving PLL circuit to lock in to the correct frequency in
order to minimize bit errors for the sync pattern recognition.
 Sync pattern: 2 bytes (value 0x2DD4) – programmed
into the hardware of the RFM12B module; after the module
recognizes this pattern, it will fill its internal receiver FIFO
with further data.
 Data: an actual payload for the transmission; the data
must not contain data with 0xAA values.
 Postamble: 1 byte (value 0xAA).

Fig. 1. MAC frame format

 One can see that the implemented MAC frame format
does not include any error checking. The algorithm will
simply stream bytes to or from the upper network layers
until the postamble byte 0xAA is being detected. Only then
the MAC layer assumes that the frame reception or
transmission is complete.

3.3. Layer 2b – Logical Link Control
 The implementation follows a Tanenbaum's [13]
category of an unacknowledged connectionless service.
According to Tanenbaum's data link layer design principles,
the following functions were implemented in the LLC layer:
 Service interface for the network layer: each packet
is transmitted in one frame.
 Transmission error handling: an error correction
Hamming code and an error detecting CRC-16 code.
 Data flow: no flow control algorithms implemented.

3.3.1. Error Correction and Detection
 Due to the nature of a wireless connection which is a
highly unreliable channel, an error correcting as well as an
error detecting code were introduced:

 Hamming code: this code was used to provide data to
the MAC frame. The implemented code is an extended ETS
8,4 Hamming code [15] – so two error bits can be detected
and recovered. This code ensures that the final code sent
via the physical device does not produce continuous
streams of 1 or 0 bits required by the MAC layer.
 CRC-16 checksum: this code was implemented for the
payload provided by the upper network layers. It is used
after and before the Hamming decoding process. The
algorithm used was reused from the existing AVR libc
library which provides a hardware optimized CRC-16
routine.

3.3.2. Frame Format
 The frame format for the LLC layer can be seen in
Figure 2. The maximum size of a frame is 256 bytes,
including the LLC header. The following fields were used:
 Type: 4 bits long – identifies the type of the transmitted
packet (broadcast or unicast);
 Length: 12 bit long – includes the total length of the
data payload;
 CRC: 16 bit long – holds the calculated CRC-16
checksum.

Fig. 2. LLC frame format

3.4. Layer 3 – B.A.T.M.A.N. Routing
 According to Tanenbaum [13], the network layer is
responsible mainly for transparently routing packets from a
source to a destination inside the network. The following
requirements for this network layer were implemented:
1. Topology information: The network layer knows the
network topology by using the B.A.T.M.A.N. routing
algorithm.
2. Technology independence: The network layer
completely hides the routing technologies and algorithms
from the upper layers.
3. Uniform addressing: The upper layers have to provide
an uniform address of the destination by using a 16 bit long
address value.
 The network layer was implemented as a
connectionless service which can be qualified as a
datagram subnet. Each packet contains the full source and
destination address and each router (mesh node) does not
hold any state information about connections.
 The network layer uses the B.A.T.M.A.N. approach
enhanced in the following way:
 RFC conformance: the real B.A.T.M.A.N. draft RFC [5]
was used as a template for implementing the routing
algorithm.
 TTL introduction: to prevent the infinite message
looping inside the network.
 Bidirectional link check: to ensure that only
bidirectional routes are being propagated through the
network.

3.4.1. Route Propagation
 As was already shown in [17] the B.A.T.M.A.N.
algorithm is very promising since not the whole network
topology information has to be stored on each mesh node
but only the next visible gateway for each known
destination.

146 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 6/2018

 The B.A.T.M.A.N. RFC [16] proposes that each mesh
node broadcasts OGM (originator) packets through the
network in order to keep the route information up-to-date.
 The implemented OGM packet format can be seen in
Figure 3. The following fields are being transmitted along
with each OGM packet:
 Version: 4-bits long – specifies the protocol
version.
 Flags: 4-bits long – can carry up to four status bits
for the packet.
 TTL: 8-bits long – decreased before each
retransmission. If the value reaches zero, the packet will be
dropped.
 Sequence Number: unique for each OGM and
increased with every transmission.
 Originator and sender address: an address of
the node which created and sent the current packet.

Fig. 3. OGM packet format

 Each mesh node always sends an OGM packet after a
configurable interval (every second in our case). When a
neighbor mesh node receives an OGM packet, it will decide
whether to save the originator in the routing table and
whether to resend the received OGM packet in order to
spread the information about the originator in the network.
The full algorithm is shown in Figure 4.

Fig. 4. OGM packet reception algorithm

3.4.2. Unicast Messages
 Unicast messages carry the actual data payload which
has to be routed from an originator to a target. They are
fully supported by the HopeMesh implementation, however,
they are not described here.

3.4.3. Route Determination
 The algorithm for finding the best gateway is based on
the count of received OGM messages as a metric. The

routing table consists of the following fields:
 Target address (2 bytes): for whom the current
routing entry is valid.
 Gateway address (2 bytes): a possible gateway
for the target.
 Sequence number (2 bytes): the last received
sequence number.
 Count (2 bytes): the total count of received
sequence numbers.
 Time (2 bytes): time of the last update for this
routing entry.
 Next pointer (1 byte): points to the next routing
entry.
 The routing table with those fields is constantly updated
upon the reception of new OGM packets. Every second the
routing table is examined for entries which can be purged.
The purge timeout is configurable (10 seconds in our case).
Route entries older than 10 seconds will be deleted from
the routing table. The algorithm ensures that no outdated
routing entries are persisted in the routing table. This allows
adapting the routing information dynamically with a
changing network and conforms to the requirements stated
in the RFC [16].

3.5. Layer 4 – Transport
 Requirements for the transport layer were inherited from
the lower layers. A transport layer entity format was chosen
as shown in Figure 5. It simply consists of a null-terminated
data stream. This allows implementing string based
applications in the application layer and passing those
strings without further modification to the transport layer.

Fig. 5. Transport entity format

3.6. Layer 5 – Application
 User space applications utilizing the lower network
layers currently are:
 Shell: responsible for sending strings over the
network whenever the user prompts a “send” command.
 Receiver thread: prints received strings to the
UART interface whenever the transport layer receives a
new payload.

4. Experimental Results
 The experiments have been conducted to study
behavior of the B.A.T.M.A.N. routing algorithm as the heart
of the HopeMesh Wireless Mesh Network.

Experiment #1 This experiment starts with a rebroadcasted
OGM sent from 0xc (a direct bidirectional link neighbor)
originated by 0xd, an unknown node until now (see Figure
6 and Listing 1).

Listing 1. Output of Experiment #1
rx:
llc: crc=0x0 , len=8, type=1
ogm: sender_addr=0xc, originator_addr=0xd, flags=0x0, seqno=23, ttl=49
tx:
llc: crc=0x0, len=8, type=1
ogm: sender_addr=0xa, originator_addr=0xd, flags=0x0, seqno=23, ttl=48
routing table:
target_addr: 0xb, gateway_addr: 0xb, seqno: 0, cnt: 2, time: 0
target_addr: 0xc, gateway_addr: 0xc, seqno: 0, cnt: 1, time: 0
target_addr: 0xd, gateway_addr: 0xc, seqno: 23, cnt: 1, time: 0

 As a result, a node 0xd was added to the routing table.

The gateway 0xc is a known neighbor so a secure route
can persist.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 6/2018 147

Experiment #2 A goal of the next experiment (performed
according to the Figure 7 and Listing 2) was to verify the
reception of an OGM originated from 0xc.

Fig. 6. Route experiment #1

Fig. 7. Route experiment #2

Fig. 8. Route experiment #3

Listing 2. Output of Experiment #2
rx:
llc: crc=0x0, len=8, type=1
ogm: sender_addr=0xc, originator_addr=0xc, flags=0x0, seqno=1, ttl=50
tx:
llc: crc=0x0, len=8, type=1
ogm: sender_addr=0xa, originator_addr=0xc, flags=0x1, seqno=1, ttl=49
routing table:
target_addr: 0xb, gateway_addr: 0xb, seqno: 0, cnt: 2, time: 0
target_addr: 0xc, gateway_addr: 0xc, seqno: 1, cnt: 2, time: 0
target_addr: 0xd, gateway_addr: 0xc, seqno: 23, cnt: 1, time: 0

 As expected, the OGM rebroadcasted by 0xa with the
“is direct” flag set.

Experiment #3 In this experiment a new interesting
situation was introduced to the node 0xa. It suddenly
received a direct OGM from 0xd originated by 0xa. 0xd
was already present in the routing table via the gateway
0xc. The behavior of the algorithm is shown in Listing 3 and
Figure 8.

Listing 3. Output of Experiment #3
rx:
llc: crc=0x0, len=8, type=1
ogm: sender_addr=0xd, originator_addr=0xa, flags=0x3, seqno=2, ttl=49
routing table:
target_addr: 0xb, gateway_addr: 0xb, seqno: 0, cnt: 4, time: 0
target_addr: 0xc, gateway_addr: 0xc, seqno: 1, cnt: 2, time: 0
target_addr: 0xd, gateway_addr: 0xc, seqno: 23, cnt: 1, time: 0
target_addr: 0xd, gateway_addr: 0xd, seqno: 0, cnt: 1, time: 0

 The node 0xd was added as a direct bidirectional link
neighbor because it rebroadcasted our own OGM. Note that
now we have two route entries to the node 0xd, one direct
link and one via the 0xc gateway.

Experiment #4 The final network topology after all the three
experiments is shown in Figure 9. The last experiment
shows what will happen if no OGM is received after an
interval of 16 seconds. This results is the empty routing
table which is a correct behavior. Currently, after 10
seconds a route entry must be deleted if no OGM is
received within this timeout.

Fig. 9. Final route topology

Packet drops The measured percentage of dropped OGM
packets was between 0.4 % and 3.97%, depending on the
experiment. This is a much better result than a 15%-drop of
OMG packets obtained previously in [17].

 The research shows that the experiments succeeded in
a correct behavior of the routing algorithm implemented
according to the proposed network stack. Certainly, not all
cases of a network topology update have been studied,
which opens new scenarios for future implementations.

5. Summary

An implementation of a robust and scalable mesh
network using embedded devices despite its hardware
constraints is quite possible. A working mesh network
prototype and an algorithmic framework for further
development is ready and running.

A complete network stack was designed and
implemented, as discussed in the paper. The B.A.T.M.A.N.-
based routing algorithm was implemented as a network
layer protocol. Moreover, some experiments have been
carried out to prove the proper routing behavior in dynamic
conditions.

148 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 6/2018

Nevertheless, there are some open issues which
could be addressed in the future. The following aspects are
left open:
 Node addresses currently have to be set up
manually – this can be done either at compile time or at
runtime in the shell.
 There is still significant amount of packet drops –
the reasons should be investigated.
 Further network topology changes and
complexities could be studied.
 Sequence numbers: currently are mostly ignored
for route metrics – this could be also enhanced.
 The current transport layer implementation is
practically not existent. Further implementation could
implement a real layer 4 protocol.
 At the MAC layer further enhanced MAC protocols
could be investigated.
 Additional periphery, such as PS/2 keyboard and
a HD44780 LCD display, can be connected instead of the
USB terminal connection.

Acknowledgement
 I would like to thank my graduate student, Sergiusz
Urbaniak, who implemented my preliminary ideas of
RFM12B and AVR ATmega16 based wireless mesh
network in his master dissertation [18].

Author: dr inż. Remigiusz Olejnik, West Pomeranian University of
Technology, Szczecin, Faculty of Computer Science and
Information Technology, ul. Żołnierska 49, 71-210 Szczecin,
Poland, E-mail: r.olejnik@ieee.org.

REFERENCES
[1] Akyildiz I. F., Wang X., Wang W.: Wireless Mesh Networks: a

Survey. Computer Networks, vol. 47, no. 4, March 2004, pp.
445–487.

[2] Web page:
 http://tuxgraphics.org/electronics/200905/embedded-tcp-ip-

stack.shtml
[3] Web page: http://bacnet.sourceforge.net/
[4] Web page: http://www.bacnet.org/
[5] Web page:
 http://www.atmel.com/tools/LIGHTWEIGHT_MESH.aspx
[6] Web page: http://www.atmel.com/Images/Atmel-42028-

Lightweight-Mesh-Developer-Guide_Application-
Note_AVR2130.pdf

[7] Web page: http://openrf.codeplex.com/
[8] Web page: http://en.wikipedia.org/wiki/UIP_(micro_IP)
[9] Web page: http://dunkels.com/adam/mobisys2003.pdf
[10] Web page: http://en.wikipedia.org/wiki/LwIP
[11] S. Zoican, M. Vochin "LwIP stack protocol for embedded

sensors network" 2012 9th International Conference on
Communications (COMM), 2012, Pages: 221 - 224, DOI:
10.1109/ICComm.2012.6262590

[12] Web page: http://www.sics.se/~adam/contiki/
[13] Tanenbaum A.: Computer networks. Prentice Hall, Upper

Saddle River 2002.
[14] Olejnik R.: Modelling of Half-Duplex Radio Access for

HopeMesh Experimental WMN Using Petri Nets.
Communications in Computer and Information Science, vol.
431, pp. 108–117. Springer International Publishing, Cham
2014.

[15] Datasheet: Enhanced Teletext specification. European
Telecommunications Standards Institute, 1997.

[16] Wunderlich S., Lindner M., Aichele C., Neumann A.: RFC draft:
Better Approach To Mobile Ad-hoc Networking (B.A.T.M.A.N.).
IETF, 2008.

[17] Olejnik R.: An Experimental Wireless Mesh Network Node
Based on AVR ATmega16 Microcontroller and RFM12B Radio
Module. Communications in Computer and Information
Science, vol. 79, pp. 96–105. Springer, Berlin Heidelberg,
2010.

[18] Urbaniak S.: Communication algorithms and principles for a
prototype of a wireless mesh network. Master thesis, West
Pomeranian University of Technology, Szczecin 2011.

