Uniwersytet Rzeszowski (1), Politechnika Łódzka (2)

doi:10.15199/48.2018.08.05

Symulacja numeryczna ogniw heterozłączowych TiO₂/Cu₂O(CuO), przy pomocy programu SCAPS

Streszczenie. W artykule przedstawiono wyniki symulacji numerycznej modeli cienkowarstwowych struktur fotowoltaicznych w programie SCAPS. Obliczono podstawowe parametry elektryczne (Jsc, η, V_{MPP}, J_{MPP}) dla standardowych warunków testowych STC (AM1.5G, 100 mW/cm², 300K) oraz zbadano wpływ warstwy absorbera (Cu₂O, CuO) i warstwy buforowej (TiO₂) na działanie ogniw słonecznych. Następnie porównano charakterystyki pojemnościowo-napięciowe, Mott Schottky'iego oraz wpływ defektów dla ogniw TiO₂/Cu₂O oraz TiO₂/CuO.

Abstract. In the presented work, the Cu_2O/TiO_2 and CuO/TiO_2 heterojunction solar cells have been analyzed by the help of Solar Cell Capacitance Simulator (SCAPS). The effect of absorber and buffer layers on the cell photoconversion efficiency, short circuit current density and open circuit voltage were simulated without defects. Next, capacitance-voltage, Mott–Schottky characteristic were calculated and analized. Finally, authors examined the effects of defect density on the efficiency. (Numerical analysis of TiO₂/Cu₂O(CuO) heterojunction solar cells using SCAPS)

Słowa kluczowe:, fotowoltaika, cienkowarstwowe ogniwa słoneczne TiO₂/Cu₂O, TiO₂/CuO, tlenek tytanu, tlenek miedzi, symulacja numeryczna, SCAPS

Keywords: photovoltaic, thin-film solar cells TiO₂/Cu₂O, TiO₂/CuO, titanium oxide, copper oxide, numerical simulation, SCAPS

Wprowadzenie

Heterozłączowe ogniwa Cu₂O/TiO₂, CuO/TiO₂ stanowią obiecujące rozwiązanie technologiczne dla tanich i (PV). konkurencyjnych przyrządów fotowoltaicznych Warstwy półprzewodnikowe tlenku tytanu i tlenku miedzi mogą być wykonywane różnymi sposobami np. poprzez rozpylanie magnetronowe, metodę PLD (ang. Pulsed Laser Deposition) oraz chemicznymi: elektrodepozycją czy metoda hydrotermiczną. W ostatnich latach eksperymentów, przeprowadzono wiele w których otrzymano struktury fotowoltaiczne Cu₂O/TiO₂ i TiO₂/CuO W tabeli 1 podano dotychczasowe osiągnięte sprawności i inne prarmetry elektryczne tych ogniw wraz z metodą ich wytworzenia.

Autorzy przedstawili numeryczne symulacje modeli cienkowarstwowych ogniw słonecznych TiO₂/Cu₂O oraz TiO₂/CuO, przeprowadzone za pomocą programu SCAPS (Solar Cell Capacitance Program). Celem pracy było obliczenie parametrów fotowoltaicznych (J_{sc}, η, V_{MPP}, J_{MPP}) dla standardowych warunków testowych STC (AM1.5G, 100 mW/cm², 300K). Ponadto zbadany został wpływ parametrów warstwy absorbera (Cu2O, CuO) i warstwy buforowej (TiO2) na działanie ogniw słonecznych, pojemnościowoporównano charakterystyki także napięciowe, Mott Schottky'iego dla ogniwa TiO2/Cu2O oraz TiO₂/CuO. Ostatecznie została przeprowadzona analiza otrzymanych wyników.

Tabela 1	Osianane	sprawności	oaniw	TiO ₂ /Cu ₂ O	oraz .	TiO ₂ /CuO	[1-5]
	Osiggane	30100000	oginw	1102/0020	oraz	102/000	[1-0].

Metoda otrzymywania	Parametry PV	Autor/rok publikacji
Oksydacja elektrolityczna TiO _{2,} Cu ₂ O	η = ~0,01%, Voc = 0,1 V, Jsc = 0,33 mA/cm², FF = 0,27	Li i in. (2011)
Meoda chemiczna	$η = 5 \cdot 10^{-4}$ %,Voc = 0.47 V, Jsc = 0.0031 mA/cm ²	A.R. Zainun i in. (2012)
TiO ₂ rf (ang. radio frequency) rozpylanie magnetronowe, elektrodepozycja Cu ₂ O	η = 0.15% Voc = 0.34 V, Jsc = 1.27 · 10 ⁻³ A/cm ² , FF = 0.36	S. Hussain i in. (2012)
Nakładanie natryskowe	η = 0,14%, Voc = 0,62 V, Jsc = 0,08 mA/cm ² , FF = 0,33	Mamat Rokhmat i in. (2017)
Metoda hydrotermiczna TiO ₂ , elektrodepozycia Cu ₂ O	n = 1.25%.	Y. Luo i in. (2011)

Struktura i właściwości ditlenku tytanu, tlenku miedzi (I), tlenku miedzi (II)

Tytan jest dziesiątym pierwiastkiem pod względem rozpowszechnienia w zbadanych obszarach kuli ziemskiej. Został on odkryty w 1791 roku przez W. Gregora oraz niezależnie w 1795 roku przez N.H Klaprotha [6]. Najważniejsze minerały tytanu to rutyl (TiO₂), ilmenit (FeTiO₂) oraz tytanit (CaTiSiO₅). Są trwałe, odporne na działanie wody i czynników atmosferycznych. Ditlenek tytanu posiada trzy formy krystaliczne występujące w naturze: brukit, anataz i rutyl. Pierwsza z nich jest dość rzadko spotykana [7]. Czysty tlenek tytanu (IV) jest półprzewodnikiem typu n. Różnica energii pomiędzy pasmem walencyjnym a pasmem przewodnictwa wynosi około 3 eV. Położenie pasma walencyjnego na diagramie energetycznym jest jednakowe dla wszystkich odmian ditlenku tytanu. Występują natomiast różnice w położeniu

dolnego skraju pasma przewodnictwa [8]. Dlatego wartość przerwy wzbronionej dla poszczególnych odmian polimorficznych jest różna i wynosi 3,2-3,26 eV (Anataz), 2,1-3,54 eV (Brukit), 3,02-3,25 eV (Rutyl) [7]. Miedź występuje w postaci dwóch tlenków: tlenek miedzi (I) i tlenek miedzi (II). Mają on różne fizyczne i elektryczne właściwości, różne kolory i struktury kryształów. Są to typowe półprzewodniki typu p z przerwą energetyczną w zakresie 1.2-1.51 eV dla CuO i 2.10-2.60 eV dla Cu₂O [9]. Tlenek miedzi jako materiał na ogniwa słoneczne został odkryty w 1920 roku [10].

Tlenek tytanu charakteryzuje się wysoką transmitancją optyczną dla fal o długościach z zakresu 400-900 nm – dzięki tak szerokiemu zakresowi i niskim stratom optycznym znalazł zastosowanie jako warstwa buforowa w połączeniu z absorberem np. tlenkiem miedzi. Ze względu na układ szerokości przerw energetycznych tlenek tytanu i tlenek miedzi mogą być nawzajem warstwą okienną i absorberem (heterozłącze). Ponadto obie warstwy mogą zostać nakładane zbliżonymi technikami i mają akceptowalnie małą różnicę parametrów termicznych i mechanicznych.

Program SCAPS

Symulacje komputerowe są często wykorzystywanym sposobem analizy i weryfikacji zjawisk fizycznych zachodzących w ogniwach PV. Istnieje kilka programów umożliwiających analizę numeryczną komercyjnych przyrządów półprzewodnikowych. Należą do nich między innymi: AMPS-1D, APSYS, SCAPS, SimWindows i PC-1D [11]. Autorzy pracy zdecydowali się na wykorzystanie programu SCAPS, ponieważ jest on przeznaczony szczególnie do jednowymiarowej analizv cienkowarstwowych ogniw fotowoltaicznych [11-13].

Program SCAPS (ang. Solar Cell Capacitance Program) jest specjalistycznym programem naukowym zaprezentowanym po raz pierwszy w roku 1996 podczas

Photovoltaic Specjalists Conference [12,13]. Po struktury i zdefiniowaniu określeniu początkowych warunków zewnętrznych (oświetlenie, polaryzacja, obwody zewnętrzne – podłączenia kontaktów) można dokonać następujących symulacji pracy przyrządu: charakterystyki prądowo-napięciowej (I-V), charakterystyki pojemnościowonapięciowej, (C-V), charakterystyki pojemnościowoczęstotliwościowej, (C-f) oraz odpowiedzi spektralnej. Symulacje wykonano dla dwóch modeli cienkowarstwowych idealnych ogniw TiO2/Cu2O i TiO2/CuO. Na podstawie wcześniejszych badań [14] do analizy przyjęto, jako optymalne grubości warstwy absorbera (Cu₂O, CuO) 4,0 μm i warstwy buforowej TiO_2 - 0,3 $\mu m.$ W celu przeprowadzenia symulacji wprowadzano parametrów poszczególnych warstw składających się na ogniwa słoneczne, dane zostały zasięgnięte z literatury (tabela 2).

Tabela. 2. Wartosci parametrow materialowych struktur 1102, Cu20 i CuO wprowadzone do programu SCAPS [14, 15-17].

Parametry warstw	TiO ₂	Cu ₂ O	CuO	ITO
Grubość warstwy µm	0,3	4,0	4,0	-
Szerokość przerwy energetycznej [eV]	3,2-3,26 (Anataz)	2.10- 2.60	1.21-1.51	3.50
Powinowactwo elektronowe [eV]	4.20	3.20	4.07	4.80
Względna przenikalność dielektryczna	55 (Anataz)	7.11	18.10	8.90
Efektywna gęstość stanów w paśmie przewodnictwa CB [1/cm ³]	2.0E+17	2.0E+17	2.2E+19	5.2 E+18
Efektywna gęstość stanów w paśmie walencyjnym VB [1/cm³]	6.0E+17	1.1E+19	5.5E+20	1.0 E+18
Ruchliwość elektronów [cm²/Vs]	1.0E+2	2.0E+2	1.0E+2	1.0 E+1
Ruchliwość dziur [cm ² /Vs]	25.0	8.0E+1	1.0E-1	1.0 E+1
Gęstość płytkich stanów donorowych [1/cm ³]	1.0E+17	0	0	1.0 E+20
Gęstość płytkich stanów akceptorowych [1/cm ³]	0	1.0E+18	1.0E+16	0

Na rys. 1 przedstawiony jest model ogniwa TiO₂/Cu₂O, TiO₂/CuO symulowanego w programie SCAPS, skonstruowany na podstawie rzeczywistej struktury wykonywanych przyrządów.

Rys. 1. Model ogniwa TiO_2/Cu_2O, TiO_2/CuO symulowanego w programie SCAPS, opracowanie własne.

Wyniki symualcji

Porównanie charakterystyk prądowo-napięciowych dla ogniw TiO₂/Cu₂O, TiO₂/CuO zostało przedstawione na rys. 2. Obliczenia były przeprowadzone dla struktur bez defektów. W tabeli 3 podane zostały wyliczone parametry ogniw.

Wstępna symulacja otrzymanych modeli ogniw TiO₂/Cu₂O i TiO₂/CuO potwierdza duży potencjał tych struktur i koresponduje z założeniami teoretycznymi. Sprawność wynosi odpowiednio ~8% i ~20%. W celu określenia jakości struktury, jako następną przetestowano charakterystykę pojemności złączowej. Na rys. 3

przedstawiono porównanie pojemności złączowej ogniw TiO₂/Cu₂O i TiO₂/CuO i jej zmiany w zależności od napięcia polaryzacji. Wzrost napięcia polaryzacji powoduje "wskrzykiwanie" nośników większościowych do obszaru przyzłączowego, a to powoduje zmniejszenie się efektywnej szerokości warstwy zubożonej i wzrost pojemności złączowej [18].

Rys. 2. Charakterystyka prądowo-napięciowa dla ogniw TiO₂/Cu₂O, TiO₂/CuO w programie SCAPS.

Tabela 3. Parametry o	gniw wyliczone	przez progra	m SCAPS.
-----------------------	----------------	--------------	----------

Parametr	CuO	Cu ₂ O	
J _{sc} [mA/cm ²]	25,09	9,42	
η [%]	22,74	7,70	
V _{MPP}	0,8	0,8	
J_{MPP}	25,07	9, 63	

Rys. 3. Charakterystyka pojemnościowo-napięciowa dla ogniw TiO₂/Cu₂O, TiO₂/CuO w programie SCAPS.

Na rys. 3 obserwujemy, że kształt charakterystyk ogniw jest do siebie zbliżony, ale co do wartości większą pojemność (około 1,5 raza) pomimo jednakowej grubości warstw aktywnych, posiada ogniwo TiO₂/Cu₂O – różnica jest obserwowana prawie dla całego zakresu. Pojemność złączowa dla Cu₂O zanika dużo szybciej – charakterystyka jest bardziej zbliżona do typowej diodowej.

Na podstawie danych dotyczących pojemności wykreślona została charakterystyka Mott Schottky'iego, rys. 4. Charakterystyka Mott Schottky jest odwrotnością kwadratu pojemności i przedstawia gestość domieszkowania w zależności od napiecia flat-band [18]. Dla TiO₂/CuO krzywa maleje wykładniczo, natomiast dla TiO₂/Cu₂O ma charakter niemal liniowy. Wraz ze wzrostem napięcia polaryzacji grubość warstwy zubożonej maleje, a co za tym idzie maleją grubości warstw, które się na nią składają. Idealna charakterystyka ukazuje liniowy charakter szerokości do czego bardziej zbliżona jest struktura TiO₂/Cu₂O.

Rys. 4. Charakterystyka Mott Schottky dla ogniw TiO₂/Cu₂O, TiO₂/CuO w programie SCAPS.

Rys. 5. Sprawność w funkcji gęstości defektów dla ogniw TiO_2/Cu_2O , TiO_2/CuO .

Na rys. 5 porównano wpływ gęstości defektów na sprawność ogniw. Dla TiO2/Cu2O wpływ defektów w warstwach TiO2 i Cu2O jest porównywalny, ale większy dla warstwy absorbera (przy 1E+28 1/cm3 dla Cu2O sprawność ogniwa spada do 4%). W ogniwie TiO2/CuO widać wyraźny spadek sprawności już koncentracji defektów powyżej 1E+14 1/cm3 dla CuO. Z drugiej strony jednak domieszkowanie warstwy TiO2 ma niewielki wpływ na pracę tego przyrządu.

Podsumowanie

W artykule przedstawiono wyniki symulacji numerycznej struktury fotowoltaicznej TiO2/CuO oraz TiO2/Cu2O w programie SCAPS. Obliczono parametry fotowoltaiczne (Jsc, n, V_{MPP}, J_{MPP}) dla standardowych warunków testowych STC oraz zbadano wpływ warstwy absorbera (Cu₂O, CuO) i warstwy buforowej (TiO₂) na działanie ogniw słonecznych. Symulacja pracy ogniw potwierdza ich ogromny potencjał, gdyż ich teoretyczna sprawność może osiągnąć poziom 8% dla TiO₂/Cu₂O i 20% dla TiO₂/CuO. Wartości te, otrzymane w oparciu o wyliczenia z programu są również zgodne z postulatami innych autorów (dla TiO₂/CuO ~16%) [19]. Porównane charakterystyki pojemnościowo-napięciowe potwierdzają większą pojemność (około 1,5 raza) dla ogniwa TiO₂/Cu₂O. Analiza wpływu defektów na sprawność ogniwa ukazuje dużą wrażliwość warstwy CuO, na wzrost koncentracji defektów przy 5E+16 cm³. W charakterystyce Mott Schottky'iego zaobserwowano oczekiwany przebieg wykresu Z tego względu można uznać, że warstwa Cu₂O jako absorber, choć o mniejszej sprawności posiada lepszą strukturę (mniej podatną na defekty strukturalne) i również zasługuje na dalsze badania.

Autorzy: mgr inż. Paulina Sawicka-Chudy Uniwersytet Rzeszowski 35-959 Rzeszów 90-924 Łódź, dr hab. inż. Maciej Sibiński Politechnika Łódzka, ul. Aleja Tadeusza Rejtana 16C ul. Wólczańska 211/215, dr hab. Marian Cholewa, prof. UR Uniwersytet Rzeszowski 35-959 Rzeszów 90-924 Łódź mgr inż. Aleksandra Sosna-Głębska Politechnika Łódzka, ul. Aleja Tadeusza Rejtana 16C ul. Wólczańska 211/215, dr Grzegorz Wisz, Uniwersytet Rzeszowski 35-959 Rzeszów 90-924 Łódź

LITERATURA

- D. Li, C-J. Chiena, S. Deora, P-Ch. Chang, E. Moulinc J. G. Lu, Prototype of a scalable core–shell Cu₂O/TiO₂ solar cell, Chem Phys Lett 501, s. 446–50, 2011.
- [2] A.R. Zainun, S. Tomoya, U. M. Noorb, M. Rusop, I. Masaya, New approach for generating Cu₂O/TiO₂ composite films for solar cell applications Materials Letters 66(1), s. 254–256, 2012.
- [3] S. Hussain, Ch. Cao, Z. Usman, Z. Chena, G. Nabi, W. S. Khan, Z. Ali, F. K.Butt, T. Mahmood, Fabrication and photovoltaic characteristics of Cu₂O/TiO₂ thin film heterojunction solar cell, Thin Solid Films 522(1), s. 430–434, 2012.
- [4] M. Rokhmat, E. Wibowo, Sutisna, Khairurrijal, M. Abdullah, Performance Improvement of TiO₂/CuO Solar Cell by Growing Copper Particle using Fix Current Electroplating Method, Procedia Engineering 170, s. 72 – 77, 2017.
- [5] Y. Luo, L. Wang, Y. Zou, X. Sheng, L. Chang, D. Yang, Electrochemically Deposited Cu₂O on TiO₂ Nanorod Arrays for Photovoltaic Application, Electrochemical and Solid-State Letters 15(2) s. H34-H36, 2012.
- [6] J. Emsley, Przewodnik po pierwiastkach, Wydawnictwo Naukowe PWN, Warszawa1997.
- [7] K. Siuzdak, Synteza i właściwości domieszkowanego niemetalami dwutlenku tytanu jako materiału elektrodowego aktywnego w świetle widzialnym, rozprawa doktorska, 2012.
- [8] T. Kasza, Badanie właściwości fotokatalitycznych i charakterystyka fizykochemiczna nanokrystalicznych filmów TiO₂ na podłożu ceramicznym, rozprawa doktorska, 2007.
- [9] G. Amin, ZnO and CuO Nanostructures. Low Temperature Growth, Characterization, their Optoelectronic and Sensing Applications, rozprawa doktorska, 2012.
- $[10]\mbox{Abdu}, \mbox{Y.} and \mbox{Musa}, \mbox{A.O}, \mbox{Bayero}, \mbox{COPPER} (I) \mbox{OXIDE} (\mbox{Cu}_2\mbox{O}) \\ \mbox{BASED} \mbox{SOLAR} \mbox{CELLS} \mbox{A} \mbox{REVIEW}, \mbox{Journal of Pure and} \\ \mbox{Applied Sciences}, \mbox{2(2)}, \mbox{s. 8} \mbox{12}. \\ \label{eq:absence}$
- [11]B. Werner, Model fizyczny cienkowarstwowych modułów fotowoltaicznych II-(III)-VI pracujących w warunkach naturalnych, rozprawa doktorska, 2010.
- [12]A. Niemegeers, S. Gillis, M. Burgelman, A user program for realistic simulation of polycrystalline heterojunction solar cells: SCAPS-1D, Proceedings of the 2nd World Conference on Photovoltaic Energy Conversion (Wien, Österreich, July 1998), JRC European Commission, s. 672-675, 1998.

- [13] M. Sibiński, K. Znajdek, P. Stanisławski, Charakteryzacja cienkowarstwowych ogniw słonecznych na podstawie pomiarów i symulacji ich charakterystyk pojemnościowych, PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 9/2015.
- [14] P. Sawicka-Chudy, M. Sibiński, G. Wisz, E. Rybak-Wilusz, M. Cholewa, Numerical analysis and optimization of Cu₂O/TiO₂, CuO/TiO₂, nanostructures PV using SCAPS, artykuł zaakceptowany do Journal of Physics: Conference Series.
- [15]Gou, L., Murphy, C.J.,Solution-phase synthesis of Cu₂O nanocubes. Nano Lett 3, s. 231–234, 2003.
- [16] Wang, W.Z., Wang, G.H., Wang, X.S., Zhan, Y.J., Liu, Y.K.,

Zheng, C.L., 2002. Synthesis and characterization of Cu_2O nanowires by a novel reduction route. Adv. Mater. 14, s. 67–69.

- [17] Jun-Yong Parka, Chan-Soo Kimb, Kikuo Okuyamac, Hye-Moon Leed, Hee-Dong Jange, Sung-Eun Leef, Tae-Oh Kima, Copper and nitrogen doping on TiO₂ photoelectrodes and their functions in dye-sensitized solar cells, Journal of Power Sources 306, s. 764–771, 2016.
- [18] P. Stanisławski, Stanowisko do pomiarów C-V ogniw słonecznych róznych typów, Politechnika Łódzka, praca magisterska, 2015.
- [19]L. Zhu, Development of Metal Oxide Solar Cells through Numerical Modelling, rozprawa doktorska, 2012.